Forgot password
 Register account
View 1144|Reply 2

一道多动(症)向量最值的几何意义

[Copy link]

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2018-7-11 08:41 |Read mode
已知单位向量$e_{1},e_{2}$互相垂直,如果对任意的$e_{1},e_{2}$所确定的平面内的向量$a,b$,都有$(a-b)^2\geqslant (t-2)a\cdot b+t(a\cdot e_{1})(b\cdot e_{2}),求实数$t$的最大值。

这道题的特点是动点多,几何意义不清晰,难道没有几何道义吗?各位大咖请指点!
向量问题.png

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-7-12 14:39
这题玩几何意义恐怕没有出路,因为这题很明显是将不等式题硬生生地改写成向量题。

不等式等价于
\[\bm a^2+\bm b^2\geqslant t\bigl(\bm a\cdot\bm b+(\bm a\cdot\bm e_1)(\bm b\cdot\bm e_2)\bigr),\]
依题意可设 `\bm e_1=(1,0)`, `\bm e_2=(0,1)`, `\bm a=(m,n)`, `\bm b=(p,q)`,则上式化为
\[m^2+n^2+p^2+q^2\geqslant t(mp+nq+mq),\]
所以就相当于求
\[\frac{xy+yz+zw}{x^2+y^2+z^2+w^2}\]
的最大值,这就是很常见的纯粹的不等式题,用前几天这帖 forum.php?mod=viewthread&tid=5462 的方法处理即可,答案选 C。

命题者的编题思路肯定就是以上过程的逆,所以真是没什么意思。

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2018-7-14 20:34
纯粹二次一直到底。开始一看似乎有纯几何法。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:03 GMT+8

Powered by Discuz!

Processed in 0.013929 seconds, 25 queries