Forgot password
 Register account
View 1002|Reply 1

子数列和原数列的敛散性

[Copy link]

9

Threads

17

Posts

0

Reputation

Show all posts

大一新生 posted 2018-7-15 01:20 |Read mode
请问该怎么证明下面的命题?
若已知一个子数列发散,则原数列发散。

3214

Threads

7831

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-3-17 20:16
若数列收敛,则子数列收敛。
证明
设 $U \in \tau$ 为 $l$ 的开邻域.
由拓扑中$\set{x_n}$收敛的定义, $\exists N \inN: \forall n > N: x_n \in U$.
当$r > N$, 我们有 $n_r > n_N > N$, 所以$\exists N \inN: \forall r > N: x_{n_r} \in U$.
因为 $U$ 是任意的, 我们证明了 $l$ 为 $\set{x_{n_r} }$ 的极限. QED.

Limit of Subsequence equals Limit of Sequence

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 13:30 GMT+8

Powered by Discuz!

Processed in 0.024026 seconds, 22 queries