Forgot password?
 Create new account
View 1863|Reply 3

[几何] 来自减压群的一道椭圆 `OP\perp OQ` 求直线

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2018-8-22 18:11:59 |Read mode
生如夏花(2365*****) 17:46:26
QQ截图20180822180551.jpg
感觉应该可以,但是没绕出来

原题:椭圆 `C`: `x^2/2+y^2=1`,过 `N(2,0)` 的直线 `l` 与 `C` 交于 `P`, `Q` 且 `OP\perp OQ`,求 `l`。

有那个垂直,自然应该想起熟知的结论 `1/h^2=1/a^2+1/b^2`,随即秒杀。

解:设 `l` 与 `O` 的距离为 `h`,因为 `OP\perp OQ`,由熟知的结论有 `1/h^2=1/a^2+1/b^2=1/2+1`,设 `l` 与 `y` 轴交于 `(0,m)`,则又有 `1/h^2=1/m^2+1/2^2`,得 `1/m^2=5/4`,从而 `l` 的方程就是 `x/2\pm\sqrt5y/2=1`。

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2018-8-22 18:44:31
回复 1# kuing

这也算是一道比较常规的解析几何题了。难得你看得上眼,发个主题

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

 Author| kuing Posted at 2018-8-22 19:12:26
回复 2# isee

毕竟可以用结论零计算量秒杀,就顺手发发咯

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

敬畏数学 Posted at 2018-8-27 08:19:16
经典结论应用。

手机版Mobile version|Leisure Math Forum

2025-4-21 19:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list