Forgot password?
 Register account
View 1723|Reply 6

[不等式] n元不等式一道

[Copy link]

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

dahool Posted 2018-8-28 22:21 |Read mode
设$a_i$为非负实数,且满足$\sum_{i=1}^{n}x_i=1$,求证:对任意的$k\in(0,\frac{1}{2}]$有$$\sum_{i=1}^{n}(\frac{x_i}{1-x_i})^k\geqslant 2$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-8-29 02:34
只需证明菊部不等式\[\left( \frac{x_i}{1-x_i} \right)^k\geqslant\frac{2x_i^{2k}}{x_1^{2k}+x_2^{2k}+\cdots+x_n^{2k}},\]即\[x_1^{2k}+x_2^{2k}+\cdots+x_n^{2k}\geqslant2x_i^k(1-x_i)^k,\]由均值可知只需证\[x_1^{2k}+x_2^{2k}+\cdots+x_n^{2k}\geqslant x_i^{2k}+(1-x_i)^{2k},\]即\[x_1^{2k}+\cdots+x_{i-1}^{2k}+x_{i+1}^{2k}+\cdots+x_n^{2k}\geqslant(x_1+\cdots+x_{i-1}+x_{i+1}+\cdots+x_n)^{2k},\]由 `0<2k\leqslant1` 可知上式成立,即得证。

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2018-8-29 07:50
回复 2# kuing
感谢,现在对这种不是均值取等的n元不等式,感觉很没想法,很抓狂

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2018-8-29 08:24
回复 2# kuing

最后一步是很显然成立嘛,我有点没想明白怎么处理!

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2018-8-29 10:46
回复  kuing

最后一步是很显然成立嘛,我有点没想明白怎么处理!
dahool 发表于 2018-8-29 08:24
你之前这帖 forum.php?mod=viewthread&tid=5350 白发了嘛?

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2018-8-29 11:19
回复 5# 色k

,惭愧!

23

Threads

67

Posts

502

Credits

Credits
502

Show all posts

 Author| dahool Posted 2018-8-29 11:24
回复 5# 色k


哎,就是这么优秀,不会的现在也还没会!没理解好!

Mobile version|Discuz Math Forum

2025-5-31 11:19 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit