Forgot password?
 Register account
View 2005|Reply 5

[函数] 怎样才能找到合乎要求的某个点?

[Copy link]

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2018-9-18 11:19 |Read mode
$已知k<1,x<0,希望找到x=x0,使得g(x)=x^2-3x+1+4/x-k<0。$

$本意是:证明当k<1时,f(x)=x^2-3x+1+4/x在x轴左半边与g(x)=k有唯一的交点。$
$易知x<0时,f(x)单调递减,f(-1)=1,f(-1)-k>0,需要找到x0,使f(x0)-k<0。$

x→0-时,f(x)→-∞。如果不用极限的方法可以吗?
请大师们指教!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-9-18 13:37
你在做这道题是吗:forum.php?mod=viewthread&tid=4235

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-9-18 14:03
至于你想要的点,可以取 `x_0=1/(k-2)`,有
\[g\left(\frac1{k-2}\right)=\frac{(k-3)(3k-7)(k-1)}{(k-2)^2}<0.\]

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2018-9-18 21:58
回复 3# kuing

正是那道高考题,2014年的。
您太厉害了!不佩服不行。
请教大师,这个1/(k-2)是推导出来的,还是您根据自己的阅历猜出来的呢?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-9-18 22:44
回复 4# 走走看看

结合图形尝试呗,可以算是猜,但也有些小技巧。
因为 k 越小要使 g(x) 负的范围就越趋向零,所以自然尝试倒数形式,为了计算简单我让它同样在 k=1 处相等,最终就得出了那个式子,其实很多式子都可以,比如 `x_0=2/(k-3)`, `x_0=3/(k-4)` 等。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2018-9-21 11:44
Last edited by 走走看看 2018-11-16 07:52回复3# Kuing


    终于想明白了,谢谢K大师指点!

Mobile version|Discuz Math Forum

2025-5-31 11:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit