Forgot password
 Register account
View 3031|Reply 8

有没有这样的连续函数,存在一点,任意阶导数都是0

[Copy link]

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2018-10-1 13:08 |Read mode
Last edited by abababa 2018-10-1 13:56是否存在定义在$(0,+\infty)$上的函数$f(x)$,满足:1.不是常数函数,2. 是连续函数,3.无穷次可导,4.对任意给定的$n\in\mathbb{Z^+}$都存在定义域中的一点$c$,使得$f'(c)=f''(c)=\cdots=f^{(n)}(c)=0$。
是否对任意的非常数的定义在$(0,+\infty)$上的连续函数$f(x)$,满足无穷次可导,对任意给定的$n\in\mathbb{Z^+}$都存在定义域中的一点$c$,使得$f'(c)=f''(c)=\cdots=f^{(n)}(c)=0$。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-10-1 13:48
定义当 `x\leqslant0` 时 `f(x)=0`,当 `x>0` 时 `f(x)=e^{-1/x}`,那么 `f^{(n)}(0)=0` 对任意正整数 `n` 成立。

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2018-10-1 13:51
回复 2# kuing
谢谢,可是$x=0$不在定义域里。我的主楼说得有点不明确,应该是存在一点$c\in(0,+\infty)$。
另外是否对任意的连续函数,都存在这样的点$c$?我把这个也加到主楼里。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-10-1 13:52
回复 3# abababa

这有什么要紧的,把函数平移一下不就好了

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2018-10-1 14:12
回复 3# abababa

至于“另外是否对任意的连续函数,都存在这样的点c?”这个显然不行啊,比如$\sin x$

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2018-10-1 21:04
回复 5# kuing

谢谢。那么对于满足主楼条件1,2,3的函数,再加上什么条件,就能保证这一类函数一定存在这样的点$c$呢?

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2018-10-2 08:11
“正常”函数一般是很困难的
假设一个函数在零点的展开为
\[f(x)=a_0+a_1x+a_2x^2+...\]
那么
\[f^{(n)}(0)=a_n·n!\]
如果要任意皆导数都为$0$,则需要$a_n=0$对$n\ge 1$全部成立,也就是一个常函数
如果不想要常函数,唯一的办法是拼接(拼接的函数不能像上面这样展开),就跟kk在2楼干的一样,那么此时不管其他地方怎么拼,这个无穷阶导数都为0的点肯定是在它的常函数段上
极端一点的话,你甚至可以把kk在2楼给的例子负数段也拼上非常数的函数,但0点这个位置仍然是个常函数,哪怕只有一个单点,它也是个强行拼进去的常数段

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2018-10-2 18:15
回复 7# 战巡

谢谢,我开始也想到了泰勒展开,不过只有解析函数才行,并且这样得到的结果就必须是常数函数。然后就是普通的不解析但能无穷次求导的函数,但是这个又不是所有连续函数都行,所以想加点条件,让这类函数都满足条件。

3218

Threads

7837

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-6-21 05:58

Every power series is the Taylor series of some $C^∞$ function

ncatlab.org/nlab/show/Borel's theorem
math.stackexchange.com/questions/63050/every- … function/63062#63062
abesenyei.web.elte.hu/publications/borel.pdf


Borel's theorem states that given a sequence of real numbers $(a_n)_{n\in \mathbb N}$ there exists a $C^\infty$ function $f\in C^\infty(\mathbb R)$ such that
$\frac {f^{(n)}(0)}{n!}=a_n $ ,  i.e. the Taylor series associated to $f$ is $\Sigma a_nX^n$.            
The function $f$ is never unique: you can always add to it a flat function, one all of whose derivatives at zero are zero, like the well-known Cauchy function $e^{-1/x^2}$.

Peano's proof is short, and completely different from Borel's. Besenyei provides full details. I present a sketch:

Given a sequence $(c_n)_{n\ge0}$ of real numbers, we want a $C^\infty$ function $f$ such that $f^{(n)}(0)=c_n$ for all $n$. Peano considers
$$ f(x)=\sum_{k\ge0}\frac{a_k x^k}{1+b_kx^2}, $$
for $(a_n)_{n\ge0}$ arbitrary, and $(b_n)_{n\ge0}$ a sequence of positive numbers, chosen so that $f$ is indeed $C^\infty$ and can be differentiated term by term. Assuming that this is possible, one easily checks that $f^{(n)}(0)=a_n$ for $n=0,1$, and that if $n\ge2$, then
$$ \frac{f^{(n)}(0)}{n!}=a_n+\sum_{j=1}^{\lfloor n/2\rfloor}(-1)^ja_{n-2j}{b_{n-2j}}^{j}. $$
To see the latter, consider the power series expansion of $\displaystyle \frac{a_k x^k}{1+b_kx^2}$, valid for $|b_kx^2|<1$, and note that it implies that its $n$-th derivative at $0$ is either $0$ (if $n-k$ is odd), or
$$ n!(-1)^ja_{n-2j}{b_{n-2j}}^{j}, $$
if $n-k=2j$ for some $j$.
The point is that this recurrence allows us to define the $a_n$ (uniquely) in terms of the $b_n$ and the $c_n$, so that $f^{(n)}(0)=c_n$ for all $n$.

In order for the above to hold, one needs to ensure that $f$ so defined can indeed be differentiated term by term. For this, Besenyei checks that if $k\ge n+2$, then $(*)$
$$\left|\left(\frac{a_kx^k}{1+b_kx^2}\right)^{(n)}\right|\le(n+1)!\frac{|a_k|k!}{b_k}|x|^{k-n-2}$$ so, if $b_k$ grows sufficiently fast with respect to $a_k$, then
$$ \sum_{k\ge n+2}\left|\left(\frac{a_kx^k}{1+b_kx^2}\right)^{(n)}\right| $$ is uniformly convergent on any finite interval, and the Weierstrass M-test allows us to differentiate termwise.

Finally, Besenyei proves $(*)$ in a straightforward fashion with estimates coming from Leibniz rule, after rewriting
$$\frac{a_k x^k}{1+b_kx^2}=\frac{a_k}{b_k}\cdot\frac{x^{k-1}}2\left(\frac1{x+\frac1{\sqrt{b_k}}i}+\frac1{x-\frac1{\sqrt{b_k}}i}\right). $$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:54 GMT+8

Powered by Discuz!

Processed in 0.024442 seconds, 28 queries