Forgot password?
 Create new account
View 2889|Reply 10

有没有这样的连续函数,存在一点,任意阶导数都是0

[Copy link]

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2018-10-1 13:08:12 |Read mode
Last edited by abababa at 2018-10-1 13:56:00是否存在定义在$(0,+\infty)$上的函数$f(x)$,满足:1.不是常数函数,2. 是连续函数,3.无穷次可导,4.对任意给定的$n\in\mathbb{Z^+}$都存在定义域中的一点$c$,使得$f'(c)=f''(c)=\cdots=f^{(n)}(c)=0$。
是否对任意的非常数的定义在$(0,+\infty)$上的连续函数$f(x)$,满足无穷次可导,对任意给定的$n\in\mathbb{Z^+}$都存在定义域中的一点$c$,使得$f'(c)=f''(c)=\cdots=f^{(n)}(c)=0$。

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2018-10-1 13:48:24
定义当 `x\leqslant0` 时 `f(x)=0`,当 `x>0` 时 `f(x)=e^{-1/x}`,那么 `f^{(n)}(0)=0` 对任意正整数 `n` 成立。

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

 Author| abababa Posted at 2018-10-1 13:51:49
回复 2# kuing
谢谢,可是$x=0$不在定义域里。我的主楼说得有点不明确,应该是存在一点$c\in(0,+\infty)$。
另外是否对任意的连续函数,都存在这样的点$c$?我把这个也加到主楼里。

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2018-10-1 13:52:59
回复 3# abababa

这有什么要紧的,把函数平移一下不就好了

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2018-10-1 14:12:03
回复 3# abababa

至于“另外是否对任意的连续函数,都存在这样的点c?”这个显然不行啊,比如 sinx

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

 Author| abababa Posted at 2018-10-1 21:04:58
回复 5# kuing

谢谢。那么对于满足主楼条件1,2,3的函数,再加上什么条件,就能保证这一类函数一定存在这样的点$c$呢?

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2018-10-2 08:11:37
“正常”函数一般是很困难的
假设一个函数在零点的展开为
\[f(x)=a_0+a_1x+a_2x^2+...\]
那么
\[f^{(n)}(0)=a_n·n!\]
如果要任意皆导数都为$0$,则需要$a_n=0$对$n\ge 1$全部成立,也就是一个常函数
如果不想要常函数,唯一的办法是拼接(拼接的函数不能像上面这样展开),就跟kk在2楼干的一样,那么此时不管其他地方怎么拼,这个无穷阶导数都为0的点肯定是在它的常函数段上
极端一点的话,你甚至可以把kk在2楼给的例子负数段也拼上非常数的函数,但0点这个位置仍然是个常函数,哪怕只有一个单点,它也是个强行拼进去的常数段

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

 Author| abababa Posted at 2018-10-2 18:15:44
回复 7# 战巡

谢谢,我开始也想到了泰勒展开,不过只有解析函数才行,并且这样得到的结果就必须是常数函数。然后就是普通的不解析但能无穷次求导的函数,但是这个又不是所有连续函数都行,所以想加点条件,让这类函数都满足条件。

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-6-21 05:58:32

Every power series is the Taylor series of some $C^∞$ function

ncatlab.org/nlab/show/Borel%27s+theorem
math.stackexchange.com/questions/63050/every- … function/63062#63062
abesenyei.web.elte.hu/publications/borel.pdf


Borel's theorem states that given a sequence of real numbers $(a_n)_{n\in \mathbb N}$ there exists a $C^\infty$ function $f\in C^\infty(\mathbb R)$ such that
$\frac {f^{(n)}(0)}{n!}=a_n $ ,  i.e. the Taylor series associated to $f$ is $\Sigma a_nX^n$.            
The function $f$ is never unique: you can always add to it a flat function, one all of whose derivatives at zero are zero, like the well-known Cauchy function $e^{-1/x^2}$.

Peano's proof is short, and completely different from Borel's. Besenyei provides full details. I present a sketch:
Given a sequence $(c_n)_{n\ge0}$ of real numbers, we want a $C^\infty$ function $f$ such that $f^{(n)}(0)=c_n$ for all $n$. Peano considers
$$ f(x)=\sum_{k\ge0}\frac{a_k x^k}{1+b_kx^2}, $$
for $(a_n)_{n\ge0}$ arbitrary, and $(b_n)_{n\ge0}$ a sequence of positive numbers, chosen so that $f$ is indeed $C^\infty$ and can be differentiated term by term. Assuming that this is possible, one easily checks that $f^{(n)}(0)=a_n$ for $n=0,1$, and that if $n\ge2$, then
$$ \frac{f^{(n)}(0)}{n!}=a_n+\sum_{j=1}^{\lfloor n/2\rfloor}(-1)^ja_{n-2j}{b_{n-2j}}^{j}. $$
To see the latter, consider the power series expansion of $\displaystyle \frac{a_k x^k}{1+b_kx^2}$, valid for $|b_kx^2|<1$, and note that it implies that its $n$-th derivative at $0$ is either $0$ (if $n-k$ is odd), or
$$ n!(-1)^ja_{n-2j}{b_{n-2j}}^{j}, $$
if $n-k=2j$ for some $j$.
The point is that this recurrence allows us to define the $a_n$ (uniquely) in terms of the $b_n$ and the $c_n$, so that $f^{(n)}(0)=c_n$ for all $n$.

In order for the above to hold, one needs to ensure that $f$ so defined can indeed be differentiated term by term. For this, Besenyei checks that if $k\ge n+2$, then $(*)$
$$\left|\left(\frac{a_kx^k}{1+b_kx^2}\right)^{(n)}\right|\le(n+1)!\frac{|a_k|k!}{b_k}|x|^{k-n-2}$$ so, if $b_k$ grows sufficiently fast with respect to $a_k$, then
$$ \sum_{k\ge n+2}\left|\left(\frac{a_kx^k}{1+b_kx^2}\right)^{(n)}\right| $$ is uniformly convergent on any finite interval, and the Weierstrass M-test allows us to differentiate termwise.

Finally, Besenyei proves $(*)$ in a straightforward fashion with estimates coming from Leibniz rule, after rewriting
$$\frac{a_k x^k}{1+b_kx^2}=\frac{a_k}{b_k}\cdot\frac{x^{k-1}}2\left(\frac1{x+\frac1{\sqrt{b_k}}i}+\frac1{x-\frac1{\sqrt{b_k}}i}\right). $$

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-9-21 20:40:46
Flat function
a flat function is a smooth function $f : \mathbb{R} \to \mathbb{R}$ all of whose derivatives vanish at a given point $x_0 \in \mathbb{R}$. The flat functions are, in some sense, the antitheses of the analytic functions. An analytic function $f : \mathbb{R} \to \mathbb{R}$ is given by a convergent power series close to some point $x_0 \in \mathbb{R}$:
\[f(x) \sim \lim_{n\to\infty} \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k .\]
In the case of a flat function we see that all derivatives vanish at $x_0 \in \mathbb{R}$, i.e. $f^{(k)}(x_0) = 0$ for all $k \in \mathbb{N}$. This means that a meaningful Taylor series expansion in a neighbourhood of $x_0$ is impossible. In the language of Taylor's theorem, the non-constant part of the function always lies in the remainder $R_n(x)$ for all $n \in \mathbb{N}$.

The function need not be flat at just one point. Trivially, constant functions on $\mathbb{R}$ are flat everywhere. But there are also other, less trivial, examples.

Example

The function defined by
\[f(x) = \begin{cases}
e^{-1/x^2} & \text{if }x\neq 0 \\
0 & \text{if }x = 0
\end{cases}\]
is flat at $x = 0$. Thus, this is an example of a non-analytic smooth function. The pathological nature of this example is partially illuminated by the fact that its extension to the complex numbers is, in fact, not differentiable.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-9-21 20:41:56
Non-analytic smooth function
A "Flat" Function with Some Interesting Properties and an Application, Paul Glaister
$type notext.pdf (240.76 KB, Downloads: 30) ghostscript去除IP属地,并去除第一页:
D:\gs9.54.0\bin\gswin32.exe -o notext.pdf -sDEVICE=pdfwrite -dFILTERTEXT -dFirstPage=2 "D:\A Flat Function with Some Interesting Properties and an Application.pdf"

bump function

手机版Mobile version|Leisure Math Forum

2025-4-21 14:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list