$A+B+C=\pi$,\begin{align*}
\cos A&=\cos\alpha_{1,2}\cos\alpha_{1,3}-\sin\alpha_{1,2}\sin\alpha_{1,3}\frac{\cos (\alpha_{3,1}+\alpha_{2,1})+\cos(\alpha_{1,2}+\alpha_{3,2})\cos(\alpha_{1,3}+\alpha_{2,3})}{\sin(\alpha_{1,2}+\alpha_{3,2})\sin(\alpha_{1,3}+\alpha_{2,3})}\\
\cos B&=\cos\alpha_{2,3}\cos\alpha_{2,1}-\sin\alpha_{2,3}\sin\alpha_{2,1}\frac{\cos (\alpha_{1,2}+\alpha_{3,2})+\cos(\alpha_{2,3}+\alpha_{1,3})\cos(\alpha_{2,1}+\alpha_{3,1})}{\sin(\alpha_{2,3}+\alpha_{1,3})\sin(\alpha_{2,1}+\alpha_{3,1})}\\
\cos C&=\cos\alpha_{3,1}\cos\alpha_{3,2}-\sin\alpha_{3,1}\sin\alpha_{3,2}\frac{\cos (\alpha_{2,3}+\alpha_{1,3})+\cos(\alpha_{3,1}+\alpha_{2,1})\cos(\alpha_{3,2}+\alpha_{1,2})}{\sin(\alpha_{3,1}+\alpha_{2,1})\sin(\alpha_{3,2}+\alpha_{1,2})}\end{align*}则\[\sin\alpha_{2,1}\sin\alpha_{3,2}\sin\alpha_{1,3}=\sin\alpha_{1,2}\sin\alpha_{2,3}\sin\alpha_{3,1}\]
几何意义:$A,B,C$和$\alpha_{i,j}$是四面体的面角
|
|
|