Forgot password?
 Create new account
View 999|Reply 1

与矩形均匀带电薄片电场强度有关的二重积分

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2018-11-3 10:49:53 |Read mode
Last edited by 青青子衿 at 2018-11-17 21:22:002.25  矩形带电薄片(带正电荷)位于\(z=-z_0\)(其中\(z_0>0\))的平面上,且带电薄片限定于\(-a\le x\le a\)与\(-b\le y\le b\)之间,
        其电荷面密度为\(\sigma\),试求出原点处的电场强度\(\boldsymbol{E}\)(矢量)
\[ \left|\overrightarrow{\boldsymbol{E}}\,\right|\,=\int_{-b}^b\int_{-a}^a \dfrac{\sigma\,\,{\rm\,d}x{\rm\,d}y}{4\pi\varepsilon_0\left(x^2+y^2+{z_{\overset{\,}{0}}}^2\right)}\dfrac{z_0}{\sqrt{x^2+y^2+{z_{\overset{\,}{0}}}^2}} \]
\begin{align*}
\big|\overrightarrow{\boldsymbol{E}}\big|\,&=\int_{-b}^b\int_{-a}^a \dfrac{\sigma z_0}{4\pi\varepsilon_0\left(x^2+y^2+{z_{\overset{\,}{0}}}^2\right)^{\frac{3}{2}}}{\rm\,d}x{\rm\,d}y\\
\,\\
&=\dfrac{\sigma z_{\overset{\,}{0}}}{4\pi\varepsilon_0}\int_{-b}^b\int_{-a}^a \dfrac{1}{\left(x^2+y^2+{z_{\overset{\,}{0}}}^2\right)^{\frac{3}{2}}}{\rm\,d}x{\rm\,d}y\\
&=\dfrac{\sigma z_{\overset{\,}{0}}}{\pi\varepsilon_0}\int_0^b\int_0^a \dfrac{1}{\left(x^2+y^2+{z_{\overset{\,}{0}}}^2\right)^{\frac{3}{2}}}{\rm\,d}x{\rm\,d}y
\end{align*}
...
  1. Desmos code
  2. \int_{-b}^b\int_{-a}^a\frac{1}{\left(x^2+y^2+z_0^2\right)^{\frac{3}{2}}}dxdy
Copy the Code

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2018-11-17 16:33:09
Last edited by 青青子衿 at 2019-7-5 16:31:00回复 1# 青青子衿
\begin{align*}
\overrightarrow{\boldsymbol{E}}\,
&=\int_{-b}^b\int_{-a}^a \dfrac{\sigma z_{\overset{\,}{0}}}{4\pi\varepsilon_{\overset{\,}{0}}\left(x^2+y^2+{z_{\overset{\,}{0}}}^2\right)^{\frac{3}{2}}}{\rm\,d}x{\rm\,d}y\,\vv{\boldsymbol{n}}\\
&=\dfrac{\sigma{\color{red}{z_{\overset{\,}{0}}}}\vv{\boldsymbol{n}}}{\pi\varepsilon_0}\int_0^b\int_0^a \dfrac{1}{\left(x^2+y^2+{z_{\overset{\,}{0}}}^2\right)^{\frac{3}{2}}}{\rm\,d}x{\rm\,d}y
\,\\
&=\dfrac{\sigma\vv{\boldsymbol{n}}}{\pi\varepsilon_0}\arctan\left(\dfrac{ab}{z_{\overset{\,}{0}}\sqrt{a^2+b^2+{z_{\overset{\,}{0}}}^2}}\right)\\
&=\dfrac{\sigma}{\pi\varepsilon_0}\arctan\left(\dfrac{ab}{z_{\overset{\,}{0}}\sqrt{a^2+b^2+{z_{\overset{\,}{0}}}^2}}\right)\Big(\,0,\,0,\,1\,\Big)\\
\end{align*}

手机版Mobile version|Leisure Math Forum

2025-4-21 14:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list