Forgot password?
 Register account
View 2031|Reply 8

[几何] 一个平面翻折问题

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2018-11-30 13:24 |Read mode
如图,将等腰直角三角形$ABC$的锐角顶点$C$翻折到边$AB$上,已知$AB=1$,则折线$DE$的最短长度为多少?
翻折.png 这题不知能不能用初等方法解决?大神们我只能微分法。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-11-30 13:37

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-11-30 14:05
回复 2# kuing

根据那帖 4# 及 9# 的结论,对本题设 `\angle ACP=\theta`,则取最小值时
\[\tan\theta=\frac{-3+\sqrt{17}}4,\]
此时折痕
\[DE=\frac32\tan\theta\sqrt{\tan^2\theta+1}=\frac3{16}\bigl(-3+\sqrt{17}\bigr)\sqrt{\frac32\bigl(7-\sqrt{17}\bigr)}=\frac38\sqrt{\frac32\bigl(71-17 \sqrt{17}\bigr)}\approx 0.43745.\]

结果真丑……

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-11-30 14:16
物理解法。太神了!

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-11-30 19:19
初中的话,,严格讲,解不了,高中也难。。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-11-30 19:20
回复 1# 力工


发个过程,谢谢。。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2018-12-1 16:11
Last edited by 游客 2018-12-2 11:16回复 5# isee


   高中:$DE^2=[(m^2+1)^3]/[(2m-2)^2]$,其中P(m,0),然后求导.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-12-2 08:15


不过,对于数学公式,只需要两端各加上一个美元符号即可。
snap.png

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2018-12-3 19:39
一道对折.jpg 回复 6# isee
手写不知上传是不是清晰的。

Mobile version|Discuz Math Forum

2025-5-31 10:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit