Forgot password?
 Create new account
View 1203|Reply 10

皮亚诺曲线怎么画

[Copy link]

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2018-11-30 20:18:11 |Read mode
Rt

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2018-11-30 20:19:27

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2018-11-30 20:23:27

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2018-11-30 20:34:58
完全看8懂……

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2018-11-30 21:36:05
回复 4# 色k


转载是专业搞代码的,我拿就用。。。要求不高,,,肯定是看不懂的,我。

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-2-11 23:38:12
Last edited by hbghlyj at 2023-3-4 00:59:00回复 5# isee
如何理解Möbius环的参数方程
\begin{align*}x(u,v)&=\left(1+{\frac {v}{2}}\cos {\frac {u}{2}}\right)\cos u\\y(u,v)&=\left(1+{\frac {v}{2}}\cos {\frac {u}{2}}\right)\sin u\\z(u,v)&={\frac {v}{2}}\sin {\frac {u}{2}}\\\end{align*}for $0\leq u<2\pi$ and $-1\leq v\leq 1$. This produces a Möbius strip of width 1, whose center circle has radius 1, lies in the $xy$-plane and is centered at (0,0,0). The parameter $u$ runs around the strip while $v$ moves from one edge to the "other".
当$u=0$时得到的参数曲线$\left(1+\frac v2,0,0\right)$是从$\left(\frac12,0,0\right)$到$\left(\frac32,0,0\right)$的$x$轴上的一条线段.
当$u=2π$时得到的参数曲线$\left(1-\frac v2,0,0\right)$是从$\left(\frac32,0,0\right)$到$\left(\frac12,0,0\right)$的$x$轴上的一条线段.
所以说这是两条线段反向粘在一起了!

当$u=π$时得到的参数曲线$\left(-1,0,\frac v2\right)$是从$\left(-1,0,\frac12\right)$到$\left(-1,0,-\frac12\right)$的平行于$z$轴的一条线段.
当$v=0$时得到的参数曲线$\left(\cos u,\sin u,0\right)$是$xy$-平面上的圆.

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-2-11 23:40:07
切1刀变成一条普通纸带(两面,用粉色和蓝色标记)
image/svg+xml

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-2-11 23:42:15
Last edited by hbghlyj at 2022-2-11 23:53:00切两刀变成1条普通纸带(两面,用粉色和蓝色标记),和1个Möbius环(紫色):
image/svg+xml

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-2-12 00:12:05
Last edited by hbghlyj at 2022-2-12 00:19:00这里有一个推导
plus.maths.org

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-2-19 05:18:09
Last edited by hbghlyj at 2022-2-19 05:25:00这里有一个隐式方程$$\large{(-0.99(x(x^2+y^2-z^2+1)-2yz)-2.03(x^2+y^2))^2=(x^2+y^2)(1.01(x^2+y^2+z^2+1)-1.98(yz-x))^2}$$
mobius.gif

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-2-24 10:40:50
  1. ContourPlot3D[x^2 y + y^3 + 2 x^2 z + 2 y^2 z + y z^2 == 0, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}]
Copy the Code
Möbius.png
  1. ParametricPlot3D[{(-t Sin[θ/2]) Cos[θ], (-t Sin[θ/2]) Sin[θ],t Cos[θ/2]}, {t, -1, 1}, {θ, 0, 2 Pi}]
Copy the Code
Möbius.png
z=1平面截线:$$x^{2}y+y^{3}+2x^{2}+2y^{2}+y=0$$
math.stackexchange.com/questions/1601718/inte … -a-mobius-strip?rq=1

手机版Mobile version|Leisure Math Forum

2025-4-20 21:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list