Forgot password?
 Create new account
View 865|Reply 3

一类含对数的二重积分

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2018-12-13 18:12:17 |Read mode
\[ \int_0^1\int_0^1 \ln\left(x^\overset{\,}{2}+y^2\right){\rm\,d}x{\rm\,d}y=-\left(3-\frac{\pi}{2}-\ln2\right) \]
\[ \int_0^1\int_0^1 \left|\ln\left(x^\overset{\,}{2}+y^2\right)\right|{\rm\,d}x{\rm\,d}y=\pi-3+\ln2 \]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2019-2-15 20:23:51
\[\int_0^1\int_0^1 \ln\left(x^\overset{\,}{2}+y^2\right){\rm\,d}x{\rm\,d}y=-\left(3-\frac{\pi}{2}-\ln2\right)\]
\[\int_0^1\int_0^1 \left|\ln\left(x^\overset{\,}{2}+y^2\right)\right|{\rm\,d}x{\rm\,d}y=\pi-3+\ln2\]
青青子衿 发表于 2018-12-13 18:12

\[ \int_0^1\int_0^1 \ln\left(x^\overset{\,}{3}+y^3\right)\mathrm{d}x\mathrm{d}y=-\left(\frac{9}{2}-\frac{\,\pi}{\sqrt{\,3\,}}-2\ln2\right) \]
\[ \int_0^1\int_0^1 \ln\left(x^\overset{\,}{4}+y^4\right)\mathrm{d}x\mathrm{d}y=-\left(6-\frac{\,\pi}{\sqrt{\,2\,}}-\sqrt{\,2\,}\ln\big(1+\sqrt{\,2\,}\,\big)-\ln2\right) \]

47

Threads

358

Posts

3014

Credits

Credits
3014

Show all posts

业余的业余 Posted at 2019-2-17 21:30:44
Last edited by 业余的业余 at 2019-2-17 22:02:00做道题玩玩。

$$\int_0^1\cfrac {t^2}{1+t^2}{\rm\,d}t=1-\arctan t|_0^1=1-\cfrac \pi 4$$

$\begin{align*}\int_0^1\int_0^1 \ln\left(x^\overset{\,}{2}+y^2\right){\rm\,d}x{\rm\,d}y&=\int_0^1 x \ln\left(x^\overset{\,}{2}+y^2\middle)\right|_0^1-\int_0^1 \cfrac {2x^2}{x^2+y^2}{\rm\,d}x\hspace{0.2cm}{\rm\,d}y\\
&=\int_0^1  \ln\left(1+y^2\right)-2+2y\arctan\left(\cfrac 1y\right){\rm\,d}y\\
&=y\ln\left(1+y^2\middle)\right|_0^1-\int_0^1\cfrac{2y^2}{1+y^2}{\rm\,d}y-2+\int_0^1 \arctan\left(\cfrac 1y\right){\rm\,d}y^2\\
&=\ln2-4+\cfrac \pi 2+y^2\arctan\left(\cfrac 1y\middle)\right|_0^1-\int_0^1\cfrac{y^2\cdot(-\cfrac 1{y^2})}{1+\cfrac 1{y^2}}{\rm\,d}y\\
&=\ln2-4+\cfrac \pi{2}+\cfrac \pi 4+\int_0^1\cfrac{y^2}{1+y^2}{\rm\,d}y\\
&=\ln2-4+\cfrac \pi{2}+\cfrac \pi 4+1-\cfrac \pi 4\\
&=\ln 2-3+\cfrac \pi 2
\end{align*}$

47

Threads

358

Posts

3014

Credits

Credits
3014

Show all posts

业余的业余 Posted at 2019-2-17 22:13:50
$$\int_0^1\int_0^1 \left|\ln\left(x^\overset{\,}{2}+y^2\right)\right|{\rm\,d}x{\rm\,d}y=-\int_0^1\int_0^{\sqrt{1-y^2}} \ln\left(x^\overset{\,}{2}+y^2\right){\rm\,d}x{\rm\,d}y+\int_0^1\int_{\sqrt{1-y^2}}^1 \ln\left(x^\overset{\,}{2}+y^2\right){\rm\,d}x{\rm\,d}y$$

手机版Mobile version|Leisure Math Forum

2025-4-21 01:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list