Forgot password?
 Register account
View 1754|Reply 4

[函数] $2\sqrt{3}\sin x\cos x+2\sin x+4\sqrt{3}\cos x$的最大值

[Copy link]

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2019-1-29 23:15 |Read mode
$2\sqrt{3}\sin x\cos x+2\sin x+4\sqrt{3}\cos x$的最大值
用拉格朗日乘子法可以解,有没有初等解法呢?
这个题的数据凑得好啊

12

Threads

54

Posts

977

Credits

Credits
977

Show all posts

shidilin Posted 2019-1-29 23:23
貌似与下面链接中的问题,是一回事啊forum.php?mod=viewthread&tid=5840&extra=page=1

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-1-30 00:04
回复 2# shidilin

才隔了三个帖

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-1-30 09:09
所以,还是楼主的标题显目。
不过,有同类的也可点开参观参观。。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2019-2-4 18:06
回复 1# 郝酒
数据肯定要凑好的,也先拉一下,再配方:

因为$\kern{5pt}2\sqrt{3}\sin x\cos x+2\sin x+4\sqrt{3}\cos x-5(\sin^2x+\cos^2x)$

$\kern{15pt}=-2(\sin x-\dfrac12)^2-(2\cos x-\sqrt3)^2-(\sqrt3\sin x-\cos x)^2+\dfrac72$

$\kern{15pt}\leqslant\dfrac72$

所以,$\kern{5pt}2\sqrt{3}\sin x\cos x+2\sin x+4\sqrt{3}\cos x\leqslant\dfrac72+5(\sin^2x+\cos^2x)=\dfrac{17}2$

用了 \kern{15pt} ,
忘录:\qquad表示两个空格的宽度。

Mobile version|Discuz Math Forum

2025-5-31 11:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit