Forgot password
 Register account
View 1699|Reply 3

[不等式] 一道拉格朗日乘数法的小菜,估计有不等式妙解

[Copy link]
业余的业余 posted 2019-2-1 00:58 |Read mode
求 $ f(x,y,z)=\sum_{cyc} xy$ 的最大值,满足约束条件 $x^2+3y^2+3z^2=1$ 且 $x,y,z >0$.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2019-2-1 01:30
有两个系数相同,那是很简单的,直接目测凑均值都行:`(0.5x^2+2y^2)+(0.5x^2+2z^2)+(y^2+z^2)\ge2f`。

如果三个系数都不同,那凑均值就需要待定系数计算一下了,最终需要解三次方程,反正早就被玩烂了……
see also: forum.php?mod=viewthread&tid=5462
original poster 业余的业余 posted 2019-2-1 23:20
回复 2# kuing

这么简单?

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2019-2-4 17:38
先拉一下,再配方:
因为$xy+yz+zx-\dfrac12(x^2+3y^2+3z^2)=-(\dfrac12x-y)^2-(\dfrac12x-z)^2-\dfrac12(y-z)^2\leqslant0$,

所以,$xy+yz+zx\leqslant\dfrac12(x^2+3y^2+3z^2)=\dfrac12$.
等号能取到吧?没验证了。
要不,搞一下判别式也行。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:31 GMT+8

Powered by Discuz!

Processed in 0.013334 seconds, 22 queries