|
Author |
青青子衿
Posted at 2024-4-23 03:05:37
\begin{align*}
u&\quad\overline{\hspace{1cm}}\quad t\\
v&\quad\overline{\hspace{1cm}}\quad x\\
w\left(u,v\right)&\quad\overline{\hspace{1cm}}\quad t\cdot\,f\left(x^2-t^2\right)\\
a\left(v\right)&\quad\overline{\hspace{1cm}}\quad x\\
b\left(v\right)&\quad\overline{\hspace{1cm}}\quad 0\\
\end{align*}
\begin{align*}
&\dfrac{\mathrm{d}}{\mathrm{d}x}\left[\int_{0}^{x}t\cdot\,\!f\left(x^2-t^2\right)\mathrm{d}t\right]\\
=&\int_{0}^{x}\dfrac{\partial\left[t\cdot\,\!f\left(x^2-t^2\right)\right]}{\partial\,x}\mathrm{d}t
+x\cdot\,\!f\big(x^2-x^2\big)\dfrac{\mathrm{d}x}{\mathrm{d}x}
-0\cdot\,\!f\big(x^2\big)\dfrac{\mathrm{d}0}{\mathrm{d}x}\\
=&\int_{0}^{x}\dfrac{\partial\left[t\cdot\,\!f\left(x^2-t^2\right)\right]}{\partial\,x}\mathrm{d}t
+x\cdot\,\!f\big(0\big) \\
=&\int_{0}^{x}t\cdot\,\!f_{\overset{\,}{x}}\left(x^2-t^2\right)\cdot\,\!2x\,\mathrm{d}t
+x\cdot\,\!f\big(0\big)\\
=&\int_{0}^{x}\left(-x\right)\cdot\,\!f_{\overset{\,}{t}}\left(x^2-t^2\right)\cdot\,\!\left(-2t\right)\,\mathrm{d}t
+x\cdot\,\!f\big(0\big)\\
=&\left(-x\right)\int_{0}^{x}f_{\overset{\,}{t}}\left(x^2-t^2\right)\cdot\,\!\left(-2t\right)\,\mathrm{d}t
+x\cdot\,\!f\big(0\big)\\
=&\left(-x\right)\left.\Big[f\left(x^2-t^2\right)\Big]\vphantom{\overset{1}{1}}\right|_{0}^{x}
+x\cdot\,\!f\big(0\big)\\
=&\left(-x\right)f\left(0\right)+x\cdot\,\!f\left(x^2\right)
+x\cdot\,\!f\big(0\big)\\
=&x\cdot\,\!f\left(x^2\right)
\end{align*}
|
|