Forgot password?
 Create new account
View 1977|Reply 9

一道大一数分题,做不出来

[Copy link]

3

Threads

41

Posts

228

Credits

Credits
228

Show all posts

wwdwwd117 Posted at 2019-4-17 09:34:18 |Read mode
设 $f(x)$ 在 $[-1,1]$ 上连续,在 $(-1,1)$ 上有三阶导数。证明:存在 $\xi\in(-1,1)$ 使得
\[ f(1)=f(-1)+2f'(0)+\frac{f'''(\xi)}{3}+8\xi. \]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2019-4-17 14:19:06
Last edited by 青青子衿 at 2019-4-17 15:34:00回复 1# wwdwwd117
PS: 怎么连你也不用LaTeX码题了?(怎么喜欢上传图片了?)(2019.4.17,14:10 图片已经去掉了)
方法是“泰勒公式”
关键在于构造\(\color{red}{G(x)=f(x)+x^4}\)

\begin{align*}
G(x)&=f(x)+x^4\\
G(\xi)&=f(\xi)+\xi^4\\
G\,'(\xi)&=f'(\xi)+4\,\xi^3\\
G\,''(\xi)&=f''(\xi)+12\,\xi^2\\
G\,'''(\xi)&=f'''(\xi)+24\,\xi\\
\end{align*}

带“拉格朗日(Lagrange)余项”的泰勒公式
\begin{align*}
G(x)&=G(x_0)+G\,'(x_0)(x-x_0)+\dfrac{G\,''(x_0)}{2}\big(x-x_0\big)^2+\cdots+\dfrac{G^{(n)}(x_0)}{n!}\big(x-x_0\big)^n+R_n(x)\\
G(x)&=G(x_0)+G\,'(x_0)(x-x_0)+\dfrac{G\,''(x_0)}{2}\big(x-x_0\big)^2+\cdots+\dfrac{G^{(n)}(x_0)}{n!}\big(x-x_0\big)^n+\dfrac{G^{(n+1)}(\xi)}{(n+1)!}\big(x-x_0\big)^{n+1}\\
G(x)&=G(x_0)+G\,'(x_0)(x-x_0)+\dfrac{G\,''(x_0)}{2}\big(x-x_0\big)^2+\dfrac{G\,'''(\xi)}{6}\big(x-x_0\big)^3\\
G(1)&=G(0)+G\,'(0)(1-0)+\dfrac{G\,''(0)}{2}\big(1-0\big)^2+\dfrac{G\,'''(\xi_{\overset{\,}{1}})}{6}\big(1-0\big)^3\\
G(-1)&=G(0)+G\,'(0)(-1-0)+\dfrac{G\,''(0)}{2}\big(-1-0\big)^2+\dfrac{G\,'''(\xi_{\overset{\,}{2}})}{6}\big(-1-0\big)^3\\
\end{align*}
\begin{align*}
&&&\left\{
\begin{split}
G(1)&=G(0)+G\,'(0)+\dfrac{G\,''(0)}{2}+\dfrac{G\,'''(\xi_{\overset{\,}{1}})}{6}\\
G(-1)&=G(0)-G\,'(0)+\dfrac{G\,''(0)}{2}-\dfrac{G\,'''(\xi_{\overset{\,}{2}})}{6}\\
\end{split}
\right.\\
\Rightarrow
&&&G(1)-G(-1)=2G\,'(0)+\dfrac{1}{3}\left(\dfrac{G\,'''(\xi_{\overset{\,}{1}})+G\,'''(\xi_{\overset{\,}{2}})}{2}\right)
\end{align*}

\begin{align*}
\min\left\{G\,'''(\xi_{\overset{\,}{2}}),\,G\,'''(\xi_{\overset{\,}{2}})\right\}\leqslant
\dfrac{G\,'''(\xi_{\overset{\,}{1}})+G\,'''(\xi_{\overset{\,}{2}})}{2}
\leqslant\max\left\{G\,'''(\xi_{\overset{\,}{2}}),\,G\,'''(\xi_{\overset{\,}{2}})\right\}
\end{align*}

\[ \therefore\exists\xi\in(\xi_{\overset{\,}{1}},\,\xi_{\overset{\,}{2}}),\quad\,G\,'''(\xi)=\dfrac{G\,'''(\xi_{\overset{\,}{1}})+G\,'''(\xi_{\overset{\,}{2}})}{2} \]

\begin{align*}
&&G(1)-G(-1)&=2G\,'(0)+\dfrac{1}{3}\left(\dfrac{G\,'''(\xi_{\overset{\,}{1}})+G\,'''(\xi_{\overset{\,}{2}})}{2}\right)\\
\Rightarrow&&f(1)-f(-1)&=2f'(0)+\dfrac{1}{3}\bigg(f'''(\xi)+24\xi\bigg)\\
\Rightarrow&&f(1)&=f(-1)+2f'(0)+\dfrac{1}{3}f'''(\xi)+8\xi\\
\end{align*}

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2019-4-17 14:27:30
回复 2# 青青子衿

图片是我去掉的,代码也是我打的。

3

Threads

41

Posts

228

Credits

Credits
228

Show all posts

 Author| wwdwwd117 Posted at 2019-4-17 16:16:53
回复 2# 青青子衿


    赞!

3

Threads

41

Posts

228

Credits

Credits
228

Show all posts

 Author| wwdwwd117 Posted at 2019-4-18 12:46:52
这里G’’’(x)要是连续函数才可以吧?但是不一定连续吧?
F`8K)3~L4A]3(E)YGP%W80I.png

3

Threads

41

Posts

228

Credits

Credits
228

Show all posts

 Author| wwdwwd117 Posted at 2019-4-18 13:05:38
还有一个细节:应该是ξ属于闭区间【ξ2,ξ1】吧??

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2019-4-18 14:31:15
回复 5# wwdwwd117

这应该是没问题的,导数虽未必连续,却有介值性,“达布定理”了解一下。
至于细节,是需要改的,事关如果两个 G''' 相等,则 `\xi` 就要取 `\xi_1` 或 `\xi_2`。

3

Threads

41

Posts

228

Credits

Credits
228

Show all posts

 Author| wwdwwd117 Posted at 2019-4-18 21:37:01
长知识了,无需连续的导函数介值定理。

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2020-10-11 11:08:35
对偶的题型
\begin{align*}
f(b)+f(a)&=2f\left(\dfrac{a+b}{2}\right)+\dfrac{(b-a)^2}{4}f''(\eta)\\
f(b)-f(a)&=2(b-a)f'\left(\dfrac{a+b}{2}\right)+\dfrac{(b-a)^3}{24}f'''(\xi)\\
\end{align*}

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-10-13 22:38:09
math.stackexchange.com/questions/2716902
Example 3.3.11: An interesting fact is that there do exist discontinuous functions that have the intermediate value property. The function
\[
f(x):= \begin{cases}\sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
\]
is not continuous at 0 , however, it has the intermediate value property. That is, for any $a<b$, and any $y$ such that $f(a)<y<f(b)$ or $f(a)>y>f(b)$, there exists a $c$ such that $f(y)=c$. Proof is left as an exercise.


$f$ is bounded and continuous on $(0,x)$ so is integrable. $f=g'$ where $g(x) = \int_0^x \sin\frac1tdt$
By Darboux's theorem, $f$ has the intermediate value property.


An example of a Darboux function that is discontinuous at one point is the topologist's sine curve function:
$$x \mapsto \begin{cases}\sin(1/x) & \text{for } x\ne 0, \\ 0 &\text{for } x=0. \end{cases}$$
By Darboux's theorem, the derivative of any differentiable function is a Darboux function. In particular, the derivative of the function $x \mapsto x^2\sin(1/x)$ is a Darboux function even though it is not continuous at one point.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list