Forgot password?
 Register account
View 1584|Reply 6

[数列] 不等式放缩

[Copy link]

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

lrh2006 Posted 2019-4-18 00:04 |Read mode
请教两个数列中的不等式放缩的问题,谢谢大家 问题.png

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2019-4-18 00:16
回复 1# lrh2006


这俩题没啥意思吧............

1、
\[\sum_{k=1}^nb_k<\sum_{k=1}^\infty b_k=\sum_{k=1}^\infty \frac{3}{4n^2}=\frac{\pi^2}{8}<\frac{5}{4}\]

2、
\[\prod_{k=2}^n(1-\frac{1}{k^2})=\prod_{k=2}^n\frac{k+1}{k}\prod_{k=2}^n\frac{k-1}{k}=\frac{n+1}{2}·\frac{1}{n}\]
至于啥时候大于$\frac{51}{101}$就自己算吧

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2019-4-18 07:17
回复 2# 战巡

谢谢!我知道这些问题对你们来说没什么意思,但是我不会嘛。第一题的求和等于八分之π的平方,是用了什么求和公式吗?不会公式的人要怎么办?

1

Threads

55

Posts

329

Credits

Credits
329

Show all posts

huing Posted 2019-4-18 08:37
Last edited by huing 2019-4-18 08:43第一题用$\sum_{n=1}^{\infty }\frac1{n^2}=\frac{\pi^2}6$是有点超纲吧。可以用放缩办法。
$$\frac3{4n^2}<\frac{3}{4n^2-1}=\frac3{(2n-1)(2n+1)}=\frac{3/2}{2n-1}-\frac{3/2}{2n+1}$$
所以$$
\sum_{k=1}^{n}{b_n}=\frac34+\sum_{k=2}^{n}{b_n}<\frac34+\frac32\cdot\left(\frac13-\frac1{2n+1}\right)<\frac54
$$

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2019-4-18 08:43
1.$\frac{3}{4n^2}<\frac{3}{4n^2-1}=\frac{3}{(2n-1)(2n+1)}$裂项求和.
这个应该也可以$\frac{3}{4n^2}<\frac{3}{4n^2-4}=\frac{3}{4(n-1)(n+1)}$,第一项开始放缩万一超过1.25,那么多保留几项不放缩,比如从第5项开始按这个公式放缩.
2.左边通分,平方差后可以化简的吧

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-4-18 16:08
Last edited by 青青子衿 2019-4-18 16:28再给一个自认为蹩脚的放缩方法:
\begin{align*}
\frac{1}{n^2}&<\frac{10}{(3n-1)(3n+2)}=\frac{10}{3(3n-1)}-\frac{10}{3(3n+2)}\qquad(n>2)\\
\frac{1}{1^2}+\frac{1}{2^2}+\cdots+\frac{1}{n^2}
&<\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{10}{(3\cdot4-1)(3\cdot4+2)}+\cdots+\frac{10}{(3n-1)(3n+2)}\\
&=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{10}{3(3\cdot4-1)}-\frac{10}{3(3\cdot4+2)}+\cdots+\frac{10}{3(3n-1)}-\frac{10}{3(3n+2)}\\
&=\frac{49}{36}+\frac{10}{3(3\cdot4-1)}-\frac{10}{3(3n+2)}\\
&=\frac{659}{396}-\frac{10}{3(3n+2)}\\
&\Downarrow\\
\frac{3}{4}\left(\frac{1}{1^2}+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)
&<\frac{659}{528}-\frac{5}{2(3n+2)}<\frac{659}{528}<\frac{5}{4}
\end{align*}
\begin{align*}
&\frac{1}{1^2}+\frac{1}{3^2}+\cdots+\frac{1}{(2n-1)^2}+\cdots&=\frac{\pi^2}8 < \frac{5}{4}\\
&\frac{1}{1^2}+\frac{1}{2^2}+\cdots+\frac{1}{n^2}+\cdots&=\frac{\pi^2}6< \frac{5}{3}
\end{align*}
论坛里出现很多次了:
forum.php?mod=viewthread&tid=3529

168

Threads

383

Posts

3329

Credits

Credits
3329

Show all posts

 Author| lrh2006 Posted 2019-4-19 23:14
嗯嗯,懂啦,谢谢楼上各位

Mobile version|Discuz Math Forum

2025-5-31 10:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit