|
青青子衿
Posted 2019-4-18 16:08
Last edited by 青青子衿 2019-4-18 16:28再给一个自认为蹩脚的放缩方法:
\begin{align*}
\frac{1}{n^2}&<\frac{10}{(3n-1)(3n+2)}=\frac{10}{3(3n-1)}-\frac{10}{3(3n+2)}\qquad(n>2)\\
\frac{1}{1^2}+\frac{1}{2^2}+\cdots+\frac{1}{n^2}
&<\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{10}{(3\cdot4-1)(3\cdot4+2)}+\cdots+\frac{10}{(3n-1)(3n+2)}\\
&=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{10}{3(3\cdot4-1)}-\frac{10}{3(3\cdot4+2)}+\cdots+\frac{10}{3(3n-1)}-\frac{10}{3(3n+2)}\\
&=\frac{49}{36}+\frac{10}{3(3\cdot4-1)}-\frac{10}{3(3n+2)}\\
&=\frac{659}{396}-\frac{10}{3(3n+2)}\\
&\Downarrow\\
\frac{3}{4}\left(\frac{1}{1^2}+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)
&<\frac{659}{528}-\frac{5}{2(3n+2)}<\frac{659}{528}<\frac{5}{4}
\end{align*}
\begin{align*}
&\frac{1}{1^2}+\frac{1}{3^2}+\cdots+\frac{1}{(2n-1)^2}+\cdots&=\frac{\pi^2}8 < \frac{5}{4}\\
&\frac{1}{1^2}+\frac{1}{2^2}+\cdots+\frac{1}{n^2}+\cdots&=\frac{\pi^2}6< \frac{5}{3}
\end{align*}
论坛里出现很多次了:
forum.php?mod=viewthread&tid=3529 |
|