Forgot password?
 Create new account
View 1884|Reply 13

$\sum \frac{1}{n^2}<\frac{5}{3}$要如何证明啊?

[Copy link]

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

郝酒 Posted at 2015-6-14 12:42:52 |Read mode
如题所示。

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2015-6-14 13:11:08
利用$\frac{1}{n^2}<\frac{1}{n^2-1}=\frac{1}{2}(\frac{1}{n-1}-\frac{1}{n+1})$
且前三项不放缩
此时左边小于
\[1+\frac{1}{4}++\frac{1}{9}+\frac{1}{2}((\frac{1}{3}-\frac{1}{5})+(\frac{1}{4}-\frac{1}{6})+.....)\]
\[<1+\frac{1}{4}++\frac{1}{9}+\frac{1}{2}(\frac{1}{3}+\frac{1}{4})<\frac{5}{3}\]

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

 Author| 郝酒 Posted at 2015-6-14 13:58:08
在出题,我是这样做的:
$\frac{1}{1^2}+\frac{1}{3^2}+\cdots+\frac{1}{(2n-1)^2} < \frac{5}{4}$
利用$(2n-1)^2\geq 4n(n-1)$.
然后 $\sum \frac{1}{n^2} < 2$
然后 $\frac{1}{1^2}+\cdots+\frac{1}{(2n)^2} < \frac{1}{1^2}+\cdots+\frac{1}{(2n-1)^2} + \frac{1}{4}\sum \frac{1}{n^2}$
然后解个线性递推。就可以了。

想做压轴题的,结果你这样一做,就要不得的: (

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2015-6-14 14:44:33
这种题早就被玩烂了啊

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

 Author| 郝酒 Posted at 2015-6-14 14:57:04
就是呢,还有新玩法?能否给个链接呢?
kuing版能否提供些压轴题的点子。简单提个名称就好:)

13

Threads

54

Posts

982

Credits

Credits
982

Show all posts

shidilin Posted at 2015-6-14 17:37:51
用定积分证明,可否?

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

 Author| 郝酒 Posted at 2015-6-14 17:48:17
回复 6# shidilin

愿闻其详。

13

Threads

54

Posts

982

Credits

Credits
982

Show all posts

shidilin Posted at 2015-6-14 19:20:58
百度一下:定积分 求和
可参考:2014年陕西省高考理科数学第21题的解法
wenku.baidu.com/link?url=t1s6er3Fb4oFVi-Dfqyw … ZPoSlpDfGdlp8MmwJE9q

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2015-6-14 22:06:23
在群里见过,还要那一题。

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

敬畏数学 Posted at 2015-6-14 22:34:20
n^2>n^2-1/4,当n》=2时,有左边《1+2/3=5/3。

Rate

Number of participants 1威望 +1 Collapse Reason
realnumber + 1

View Rating Log

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted at 2015-6-16 07:27:34
回复 10# 敬畏数学


    这样更简便,赞!

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2015-6-27 15:43:04
回复 11# 踏歌而来
巴塞尔问题
kuing.cjhb.site/forum.php?mod=redirect&go … d=2900&pid=10933
\[\displaystyle\sum_{n=1}^\infty\frac{1}{n^2}=\lim_{n\to\infty}(1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2})=1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2}+\cdots=\zeta(2)=?\]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2015-6-27 18:30:46
回复 12# 青青子衿
那不是$\dfrac{\pi^2}6$么?

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2015-6-27 19:47:00
回复 13# 其妙
是呀!只是把这个问题描述一下!

手机版Mobile version|Leisure Math Forum

2025-4-21 01:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list