Forgot password
 Register account
View 6796|Reply 8

[不等式] $\frac{1}{1^2}+\frac{1}{3^2}+\cdots+\frac{1}{(2n-1)^2} < \frac{5}{4}$

[Copy link]

132

Threads

251

Posts

1

Reputation

Show all posts

郝酒 posted 2015-6-14 20:41 |Read mode
想问下这个除了基本不等式放缩,还有没有其他的证法?

132

Threads

251

Posts

1

Reputation

Show all posts

original poster 郝酒 posted 2015-6-16 16:09
顶顶,看有没有别的证法。
活着&存在 posted 2015-6-16 20:36
Last edited by hbghlyj 2025-6-13 19:10\begin{aligned}
& \frac{1}{(2 n-1)^2}<\frac{1}{(2 n-3)(2 n-1)}=\frac{1}{2}\left(\frac{1}{2 n-3}-\frac{1}{2 n-1}\right) \\
& \sum \frac{1}{(2 n-1)^2}<1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\frac{1}{2}\left[\left(\frac{1}{7}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{11}\right)+\cdots+\left(\frac{1}{2 n-3}-\frac{1}{2 n-1}\right)\right] \\
& =1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\frac{1}{2}\left(\frac{1}{7}-\frac{1}{2 n-1}\right)<1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+\frac{1}{14}<\frac{5}{4}
\end{aligned}多弄几个就可以了。

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2015-6-16 21:56
\[\sum_{k=1}^{n}\frac{1}{(2k-1)^2}<\sum_{k=1}^{\infty}\frac{1}{(2k-1)^2}=\zeta(2)-\frac{1}{2^2}\zeta(2)=\frac{\pi^2}{6}·\frac{3}{4}=\frac{\pi^2}{8}\]

132

Threads

251

Posts

1

Reputation

Show all posts

original poster 郝酒 posted 2015-6-18 13:08
求证 $\zeta(2)=\frac{\pi^2}{6}$

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2015-6-18 14:14
回复 5# 郝酒


这是常识,自己看书

132

Threads

251

Posts

1

Reputation

Show all posts

original poster 郝酒 posted 2015-6-18 20:58
Last edited by 郝酒 2015-6-19 23:46这跟现代人用智能手机是一个类型……
$\zeta(2)=\pi^2/6$并不是一个比放缩更简单的问题。

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2015-6-19 11:40
回复 7# 郝酒


下次劳资就把题目改成让你证明这个玩意$<\frac{\pi^2}{8}$,看你还怎么放缩

132

Threads

251

Posts

1

Reputation

Show all posts

original poster 郝酒 posted 2015-6-19 23:47
只要严格小于就有放缩的空间。
话说这种放缩的技巧还是有教育的价值的。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 13:37 GMT+8

Powered by Discuz!

Processed in 0.017589 seconds, 33 queries