Forgot password?
 Create new account
View 2505|Reply 5

[不等式] 含对数的求和

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2013-11-8 22:29:14 |Read mode
Last edited by realnumber at 2013-11-8 23:41:00\[prove-that  \frac{\ln{2}}{2^4}+\frac{\ln{3}}{3^4}+\frac{\ln{4}}{4^4}+...+\frac{\ln{n}}{n^4}\le\frac{1}{14}\]
tieba.baidu.com/p/2693106326?qq-pf-to=pcqq.group


求得$f(x)=\frac{\ln{x}}{x}$的最大值为$f(e)=\frac{1}{e}$,$\frac{1}{k^3}\le \frac{1}{4}(\frac{1}{{(k-1)}^2}-\frac{1}{{(k+1)}^2})$
\[所以\frac{\ln{2}}{2^4}+\frac{\ln{3}}{3^4}+...+\frac{\ln{n}}{n^4}\le\frac{1}{e}(\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{n^3})\le\frac{1}{e}(\frac{1}{8}+\frac{1}{27}+\frac{1}{64}+\frac{1}{4}(\frac{1}{16}+\frac{1}{25}))\le\frac{1}{14}\]
最后一个还是按计算器.有没好点办法?

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-11-9 05:22:33
回复 1# realnumber

楼上应该还有问题
\[\sum_{i=2}^{\infty}\frac{\ln(i)}{i^4}\le\frac{1}{e}(\zeta(3)-1)=0.0743...>0.0714...=\frac{1}{14}\]

原式其实是$-\zeta'(4)\approx0.0689$,这个不等式还是比较紧凑的

令函数
\[f(x)=\frac{\ln(x)}{x^4}\]
\[f'(x)=\frac{1-4\ln(x)}{x^5}<0 , x\ge2\]
所以有
\[\sum_{i=n}^{\infty}f(i)<\int_{n-1}^{\infty}f(x)dx=\frac{1+3\ln(n-1)}{9(n-1)^3}\]
如果抛掉前面3项,从第四项开始放大,有
\[\sum_{i=2}^{\infty}f(i)<\frac{\ln(2)}{2^4}+\frac{\ln(3)}{3^4}+\frac{\ln(4)}{4^4}+\frac{1+3\ln(4)}{576}\approx0.07126<\frac{1}{14}\]

2

Threads

8

Posts

55

Credits

Credits
55

Show all posts

tian27546西西 Posted at 2013-11-9 10:55:39
$$\frac{d}{dx}\left[\frac{\log x}{x}\right] = \frac{1 - \log x}{x^2} < 0
\quad\text{当 } x > e$$
我们有
$$\frac{\log k}{k} \le \frac{\log 4}{4} = \frac{\log 2}{2}\quad\text{ 对于 } k \ge 4.$$
则有
$$\sum_{k=2}^\infty\frac{\log k}{k^4}
= \sum_{k=2}^\infty\left(\frac{\log k}{k}\right)\frac{1}{k^3}
\le \frac{\log 2}{2^4} + \frac{\log 3}{3^4} + \frac{\log 2}{2}\sum_{k=4}^\infty\frac{1}{k^3}
$$

$$\sum_{k=4}^\infty\frac{1}{k^3} < \sum_{k=4}^\infty\frac{1}{k^3-k}
= \sum_{k=4}^\infty\frac{1}{(k-1)k(k+1)}
= \frac12 \sum_{k=4}^\infty\left( \frac{1}{(k-1)k} - \frac{1}{k(k+1)}\right)
= \frac12 \frac{1}{(4-1)4} = \frac{1}{24}
$$
我们得到
$$\sum_{k=2}^\infty\frac{\log k}{k^4} < \frac{\log 2}{16} + \frac{\log 3}{81} + \frac{\log 2}{48} = \frac{\log 2}{12} + \frac{\log 3}{81} \sim 0.071325 < \frac{1}{14}$$
备注:$$\zeta(x) = \sum_{n=1}^{\infty}\frac{1}{n^x},x>1$$
则有
$$\zeta'(x) = -\sum_{n=1}^{\infty}\frac{\ln{n}}{n^x}.$$
所以
$$\sum_{i=2}^{n}\dfrac{\ln{i}}{i^4}
=\sum_{i=1}^{n}\dfrac{\ln{i}}{i^4}
< -\zeta'(4) = 0.068911265896125379849\cdots < \frac{1}{14}
$$

2

Threads

8

Posts

55

Credits

Credits
55

Show all posts

tian27546西西 Posted at 2013-11-9 11:42:53
稍微分析,发现有  $$ \sum_{i=2}^{i=n}\frac {\ln(i)}{i^4} \le \frac 1 {14}- \frac 1 2 \frac{\ln(n)} {n^3},n\ge 6 $$

证明利用数归即可.

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-11-9 12:55:50
学习了!

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2013-11-9 14:38:15
谢谢二位,学习了

手机版Mobile version|Leisure Math Forum

2025-4-21 14:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list