Forgot password?
 Create new account
View 1263|Reply 3

特征多项式的Leverrier-Faddeev算法

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2019-5-8 01:12:36 |Read mode
Last edited by 青青子衿 at 2019-5-8 14:27:00\begin{align*}
\varphi(\lambda)
&=\det\left(\lambda\boldsymbol{I}_n-\boldsymbol{A}\right)=\sum_{k=0}^{n}c_{\overset{\,}{k}}\lambda^k\\
&=c_{\overset{\,}{n}}\lambda^n+c_{\overset{\,}{n-1}}\lambda^{n-1}+\cdots+c_{\overset{\,}{1}}\lambda+c_{\overset{\,}{0}}\\
&=\lambda^n+c_{\overset{\,}{n-1}}\lambda^{n-1}+\cdots+c_{\overset{\,}{1}}\lambda+c_{\overset{\,}{0}}\\
&=\lambda^n-\operatorname{tr}\left(\boldsymbol{A}\right)\lambda^{n-1}+\cdots+c_{\overset{\,}{1}}\lambda+(-1)^n\det\left(\boldsymbol{A}\right)\\
\end{align*}
\begin{align*}
\sigma_{\overset{\,}{k}}=(-1)^k\,c_{\overset{\,}{n-k}}={\large\dfrac{1}{k!}}\begin{vmatrix}
\operatorname{tr}\left(\boldsymbol{A}\right) & 1 & & & & & \\
\operatorname{tr}\left(\boldsymbol{A}^2\right) & \operatorname{tr}\left(\boldsymbol{A}\right) & 2 & & & & \\
\operatorname{tr}\left(\boldsymbol{A}^3\right) & \operatorname{tr}\left(\boldsymbol{A}^2\right) & \operatorname{tr}\left(\boldsymbol{A}\right) & \ddots & & & \\
\vdots & \vdots & \vdots& \ddots & \ddots &  & \\
\operatorname{tr}\left(\boldsymbol{A}^{k-2}\right) & \operatorname{tr}\left(\boldsymbol{A}^{k-3}\right) & \operatorname{tr}\left(\boldsymbol{A}^{k-4}\right) & \dots & \operatorname{tr}\left(\boldsymbol{A}\right) & k-2 & \\
\operatorname{tr}\left(\boldsymbol{A}^{k-1}\right) & \operatorname{tr}\left(\boldsymbol{A}^{k-2}\right) & \operatorname{tr}\left(\boldsymbol{A}^{k-3}\right) & \dots& \operatorname{tr}\left(\boldsymbol{A}^2\right) & \operatorname{tr}\left(\boldsymbol{A}\right) & k-1\\
\operatorname{tr}\left(\boldsymbol{A}^k\right) & \operatorname{tr}\left(\boldsymbol{A}^{k-1}\right) & \operatorname{tr}\left(\boldsymbol{A}^{k-2}\right) & \dots& \operatorname{tr}\left(\boldsymbol{A}^3\right) & \operatorname{tr}\left(\boldsymbol{A}^2\right) & \operatorname{tr}\left(\boldsymbol{A}\right)\\
\end{vmatrix}
\end{align*}
en.wikipedia.org/wiki/Faddeev–LeVerrier_algorithm

\begin{align*}  
x_{\overset{\,}{1}}+x_{\overset{\,}{2}}+\cdots+x_{\overset{\,}{n}}=\sigma_{\overset{\,}{1}}
&
=
&
\sum_{i=1}^n\,x_{\overset{\,}{i}}&=-\,c_{\overset{\,}{n-1}}\\

\begin{split}
x_{\overset{\,}{1}}x_{\overset{\,}{2}}+x_{\overset{\,}{1}}x_{\overset{\,}{3}}+&\cdots&+x_{\overset{\,}{1}}x_{\overset{\,}{n}}\\
+x_{\overset{\,}{2}}x_{\overset{\,}{3}}+&\cdots&+x_{\overset{\,}{2}}x_{\overset{\,}{n}}\\
+&\cdots&\\
&&+x_{\overset{\,}{n-1}}x_{\overset{\,}{n}}\\
\end{split}=\sigma_{\overset{\,}{2}}
&
=
&
\sum_{1\leqslant\,i_1<i_2\leqslant\,n}\,x_{\overset{\,}{i_1}}x_{\overset{\,}{i_2}}&=\phantom{+}\,c_{\overset{\,}{n-2}}\\
\\
\left(\begin{array}{cc}
&\begin{split}
x_{\overset{\,}{1}}x_{\overset{\,}{2}}x_{\overset{\,}{3}}+x_{\overset{\,}{1}}x_{\overset{\,}{2}}x_{\overset{\,}{4}}+&\cdots&+x_{\overset{\,}{1}}x_{\overset{\,}{2}}x_{\overset{\,}{n}}\\
+x_{\overset{\,}{1}}x_{\overset{\,}{3}}x_{\overset{\,}{4}}+&\cdots&+x_{\overset{\,}{1}}x_{\overset{\,}{3}}x_{\overset{\,}{n}}\\
+&\cdots&\\
&&+x_{\overset{\,}{1}}x_{\overset{\,}{n-1}}x_{\overset{\,}{n}}
\end{split}\\
&+\\
&\begin{split}
x_{\overset{\,}{2}}x_{\overset{\,}{3}}x_{\overset{\,}{4}}+&\cdots&+x_{\overset{\,}{2}}x_{\overset{\,}{3}}x_{\overset{\,}{n}}\\
+&\cdots&\\
&&+x_{\overset{\,}{2}}x_{\overset{\,}{n-1}}x_{\overset{\,}{n}}\\
\end{split}\\
&+\\
&\vdots\\
&+x_{\overset{\,}{n-2}}x_{\overset{\,}{n-1}}x_{\overset{\,}{n}}
\end{array}\right)
=\sigma_{\overset{\,}{3}}
&
=
&
\sum_{1\leqslant\,i_1<i_2<i_3\leqslant\,n}\,x_{\overset{\,}{i_1}}x_{\overset{\,}{i_2}}x_{\overset{\,}{i_3}}&=-\,c_{\overset{\,}{n-3}}\\
\vdots\,\,\,&&\vdots\\
\sigma_{\overset{\,}{k}}&=&
\sum_{1\leqslant\,i_1<i_2<\cdots<i_k\leqslant\,n}\,x_{\overset{\,}{i_1}}x_{\overset{\,}{i_2}}\cdots\,x_{\overset{\,}{i_k}}&=(-1)^k\,c_{\overset{\,}{n-k}}\\
\vdots\,\,\,&&\vdots\\
\sigma_{\overset{\,}{n}}&=&
x_{\overset{\,}{1}}x_{\overset{\,}{2}}\cdots\,x_{\overset{\,}{n}}&=(-1)^n\,c_{\overset{\,}{0}}\\
\end{align*}

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2021-7-12 23:11:33
Last edited by 青青子衿 at 2021-8-10 22:08:00\begin{align*}
\varphi(\lambda)
&=\det\left(\lambda\boldsymbol{I}_n-\boldsymbol{A}\right)=\sum_{k=0}^{n}c_{\overset{\,}{k}}\lambda^k\\
&=c_{\overset{\,}{n}}\lambda^n+c_{\overset{\,}{n-1}}\lambda^{n-1}+\cdots+c_{\overset{\,}{1}}\lambda+c_{\overset{\,}{0}}\\
&=\lambda^n+c_{\overset{\,}{n-1}}\lambda^{n-1}+\cdots+c_{\overset{\,}{1}}\lambda+c_{\overset{\,}{0}}\\
&=\lambda^n-\operatorname{tr}\left(\boldsymbol{A}\right)\lambda^{n-1}+\cdots\\
&\qquad\quad+(-1)^{n-1}\operatorname{tr}\left[\operatorname{adj}(\boldsymbol{A})\right]\lambda\\
&\qquad\qquad\qquad+(-1)^n\det\left(\boldsymbol{A}\right)\\
\end{align*}
n=3
\begin{align*}  
\varphi(\lambda)  
&=\det\left(\lambda\boldsymbol{I}_3-\boldsymbol{A}_{3\times3}\right)\\
&=\lambda^3-\operatorname{tr}\left(\boldsymbol{A}\right)\lambda^2+\operatorname{tr}\left[\operatorname{adj}(\boldsymbol{A})\right]\lambda-\det\left(\boldsymbol{A}\right)
\end{align*}
Jacobi's determinant derivative formula
en.wikipedia.org/wiki/Jacobi%27s_formula

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2022-4-3 08:50:29
整数分拆&特征值的初等对称多项式
kuing.cjhb.site/forum.php?mod=viewthread& … 8&extra=page%3D1

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2023-6-8 18:52:23
是否与这个递推公式等价

手机版Mobile version|Leisure Math Forum

2025-4-20 22:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list