Forgot password?
 Register account
View 1753|Reply 2

[几何] 两个定圆与面积最大的直角三角形

[Copy link]

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2019-5-8 23:08 |Read mode
Last edited by 青青子衿 2019-5-8 23:20极坐标系下有两个定圆\(\,\odot\,\!P\,\)与\(\,\odot\,\!Q\,\),两个圆上分别有两个点\(\,M\,\)与\(\,N\,\),其中OM⊥ON请问何时这个直角三角形面积最大。
5730335.png
如果这种情形下过于复杂的话,将问题简化为两个定圆的圆心都落于极轴所在的直线上,是否可以快速地得出结果呢?

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2019-5-8 23:14
想起了这帖 forum.php?mod=viewthread&tid=5771 ,晚点也试试玩速度分解,先剪个片……

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

 Author| 青青子衿 Posted 2019-5-9 17:48
Last edited by 青青子衿 2019-6-16 11:25r=r_{OP}\cos\left(\theta\right)+\sqrt{{r_{OP}}^2\cos\left(\theta\right)^2-\left({r_{OP}}^2-{r_p}^2\right)}
r=r_{OQ}\cos\left(\theta\right)+\sqrt{{r_{OQ}}^2\cos\left(\theta\right)^2-\left({r_{OQ}}^2-{r_q}^2\right)}
好像真的不好算
\begin{align*}
\rho_{\overset{}{1}}\left(\theta\right)&=\rho_{\overset{}{OP}}\cos\left(\theta\right)+\sqrt{{\rho_{\overset{}{OP}}}^2\cos\left(\theta\right)^2-\left({\rho_{\overset{}{OP}}}^2-{R_{\overset{}{P}}}^2\right)}\\
\\
\rho_{\overset{}{2}}\left(\theta\right)&=\rho_{\overset{}{OQ}}\cos\left(\theta-\frac{\pi}{2}\right)+\sqrt{{\rho_{\overset{}{OQ}}}^2\cos\left(\theta-\frac{\pi}{2}\right)^2-\left({\rho_{\overset{}{OQ}}}^2-{R_{\overset{}{Q}}}^2\right)}\\
\\
\rho_{\overset{}{2}}\left(\theta\right)&=\rho_{\overset{}{OQ}}\sin\left(\theta\right)+\sqrt{{\rho_{\overset{}{OQ}}}^2\sin\left(\theta\right)^2-\left({\rho_{\overset{}{OQ}}}^2-{R_{\overset{}{Q}}}^2\right)}\\
\end{align*}

Mobile version|Discuz Math Forum

2025-6-4 21:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit