Forgot password?
 Register account
View 1864|Reply 5

[几何] 几何最值问题

[Copy link]

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2019-5-16 03:42 |Read mode
已知:$x^2+y^2=4$,求$3\sqrt{5-2x}+\sqrt{13-6y}$的最小值
是不是阿氏圆啊?咋做呢?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-5-16 03:45
嗯,配个方,很明显,原式 `=3\sqrt{(x-1)^2+y^2}+\sqrt{x^2+(y-3)^2}`。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-5-16 09:25

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-5-16 14:21
回复 3# 敬畏数学

是的,同样的题,反正就是配方+阿氏,就数据上来说,目测 1# 的还简单一些。

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

 Author| facebooker Posted 2019-5-16 14:52
大佬 没学过阿氏圆啊 给个过程吧 谢谢

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-5-16 15:48
设 `P(x,y)` 在圆 `x^2+y^2=4` 上,记 `A(1,0)`, `B(0,3)`,据 2# 的配方式可知问题即是求 `3PA+PB` 的最小值。

设 `C(4,0)`, `D(0,4/3)`,则不难证明
\[PA=\frac12PC,PB=\frac32PD,\]从而
\[3PA+PB=\frac32(PC+PD)\geqslant\frac32CD=\frac32\sqrt{4^2+\frac{4^2}{3^2}}=2\sqrt{10},\]取等为线段 `CD` 与圆的交点,显然存在,不必具体写出。
QQ截图20190516154820.png

Mobile version|Discuz Math Forum

2025-5-31 10:51 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit