Forgot password?
 Register account
View 1540|Reply 5

[函数] 求a+b最小值

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2019-5-20 11:20 |Read mode
已知$2bt^2+3at-2b-3\le 0$,对任意$t\in [-\sqrt{2},\sqrt{2}]$恒成立,则a+b的最小值是_______.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-5-20 12:57
看:forum.php?mod=viewthread&tid=3738,照搬即可。

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

 Author| realnumber Posted 2019-5-20 13:55
按2楼提供办法得到t=-0.5,得到a+b ≥-2,此时a=-0.8,b=-1.2
我得想想为什么可以......

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-5-20 15:05
$ a+b\geqslant -2,-\frac{12}{5} (t+\frac{1}{2})^2\leqslant 0$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-5-21 20:15
回复 3# realnumber


    见到2#我就想起来了,不过,这之前真是忘记了。

   

    按所求的结合,最直接的想法就是让$a<0,b<0$(等于零,另外讨论),如果运气好的话,就是答案,(否则还是需要讨论。)

    动笔算了下,满足的条件即

\begin{align*}
a&<0,\\
b&<0,\\
-3\sqrt 2 a+2b-3&\leqslant 0,\\
9a^2+16b^2+24b&\leqslant 0
\end{align*}
求$(a+b)$的最大值,而恰好是与椭圆切的时候:$-2$.

这题的数据实在是太特别了。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-5-21 23:49
常规方法也可以的。

Mobile version|Discuz Math Forum

2025-5-31 11:03 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit