Forgot password?
 Register account
View 1851|Reply 2

[不等式] 三角函数式的最值

[Copy link]

46

Threads

82

Posts

766

Credits

Credits
766

Show all posts

Shiki Posted 2019-6-7 10:23 |Read mode
1.$\alpha, \beta$为锐角
求$\frac{(1+cos^2\alpha)(1-sin^4\alpha cos^4\beta )(1-sin^4\alpha sin^4\beta)}{sin^22\alpha sin^22\beta}$的最小值
2.在$\triangle ABC$中,求$\frac {\Sigma \sin{\frac{A}{2}}\sin{\frac {B}{2}}}{\Sigma \sin A}$的最大值
= =

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-6-7 10:58

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-6-7 16:12
1、令 `x=\sin^22\beta`, `t=\sin^2\alpha`,则原式化为
\[f(x)=\frac{2-t}{4t(1-t)}\left( \frac{1-t^2}x+\frac{t^4}{16}x+\frac{t^2}2 \right).\]
(1)当 `t^4<16(1-t^2)` 时,则当 `x=1` 取最小,即
\[f(x)\geqslant f(1)=\frac{(2-t)(4-t^2)^2}{64t(1-t)},\]求导易证当 `t=2/3` 时上式右边最小,得到 `f(x)\geqslant32/27`;

(2)当 `t^4\geqslant16(1-t^2)` 时,有
\begin{align*}
f(x)&\geqslant\frac{2-t}{4t(1-t)}\left( (1-t^2)\left( \frac1x+x \right)+\frac{t^2}2 \right)\geqslant\frac{2-t}{4t(1-t)}\left( 2(1-t^2)+\frac{t^2}2 \right)\\
&=\frac{(2-t)(4-3t^2)}{8t(1-t)}>\frac{(2-t)(4-3t)}{8t(1-t)}=\frac1t+\frac1{8-8t}-\frac38\geqslant\frac{\bigl(\sqrt8+1\bigr)^2-3}8>\frac54>\frac{32}{27}.
\end{align*}
综上得最小值为 `32/27`

Mobile version|Discuz Math Forum

2025-5-31 10:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit