Forgot password
 Register account
View 2674|Reply 7

[函数] 奇怪的导数

[Copy link]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2013-11-1 13:47 |Read mode
\[g(x)=x(\frac{1+\ln x}{e^x})'=\frac{1-x-x\ln x}{e^x}\]
求证:$g(x)<1+e^{-2}$
QQ截图20131101134855.png
从图象看$g(x)<1+e^{-3}$都可以.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-11-1 14:04
奇怪在哪?

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2013-11-1 14:07
Last edited by realnumber 2013-11-1 14:13容易得只需要证明0<X<1即可.
因为$e^x>1+x$
那么本题,只需要证明$1-x\ln x-x<(1+x)(1+e^{-2})$
即$\ln x+2+e^{-2}+\frac{1}{xe^2}>0$
设$f(x)=\ln x+2+e^{-2}+\frac{1}{xe^2}$
$f'(x)=\frac{1}{x}-\frac{1}{x^2e^2}=0$解得$x=e^{-2}$,取到最小,此时$f(e^{-2})>0$成立0.
看改进的结果,
只需要证明$1-x\ln x-x<(1+x)(1+e^{-3})$
即$\ln x+2+e^{-3}+\frac{1}{xe^3}>0$
设$f(x)=\ln x+2+e^{-3}+\frac{1}{xe^3}$
$f'(x)=\frac{1}{x}-\frac{1}{x^2e^3}=0$解得$x=e^{-3}$,取到最小,此时$f(e^{-3})>0$成立0.也可以。嘿嘿~~~运气好得很~~~

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2013-11-1 14:26
lnx,和$e^x$搭配普高学生很少见,,勉强说个理由,...好吧,承认是标题党

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2013-11-1 14:32
lnx,和$e^x$搭配普高学生很少见,,勉强说个理由,...好吧,承认是标题党 ...
realnumber 发表于 2013-11-1 14:26
高等数学也很少见好吧...
因为这货的积分巨坑无比
\[\int_{0}^{\infty}\frac{ln(x)}{e^x}dx=-c\approx-0.577216\]

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-11-1 17:54
呵呵,迷茫中
依然饭特稀 posted 2013-11-2 00:15
貌似山东的高考题?

412

Threads

1432

Posts

3

Reputation

Show all posts

original poster realnumber posted 2013-11-2 20:00
回复 7# 依然饭特稀

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 05:36 GMT+8

Powered by Discuz!

Processed in 0.014976 seconds, 26 queries