Forgot password?
 Create new account
View 975|Reply 2

曲柄滑块机构曲线

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2019-6-21 22:59:34 |Read mode
Last edited by 青青子衿 at 2021-8-20 21:34:00The curve of the slider-crank mechanism
\begin{cases}   
\begin{split}      
x&=r\sin\left(t\right)+\frac{L}{R}\sqrt{R^2-r^2\cos^2\left(t\right)}\\
y&=\left(1-\frac{L}{R}\right)r\cos\left(t\right)
\end{split}   
\end{cases}
\[x^4-2\left(L^2+r^2-\frac{\left(L^2+R^2\right)y^2}{\left(L-R\right)^2}\right)x^2+\left(L^2-r^2-\frac{\left(L^2-R^2\right)y^2}{\left(L-R\right)^2}\right)^2=0\]

.

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2021-6-12 22:22:11
不知道能不能求出该封闭曲线的面积?
x
24635757357.gif

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-2-25 07:29:03
Asymptote画图 $|OA|=1.6,|AC|=L=3.2,|AB|=R=6$


Mathematica数值计算面积为3.74618
  1. L = 3.2;
  2. R = 6;
  3. Area[ParametricRegion[{r Sin[t] + (L/R) Sqrt[R^2 - r^2 Cos[t]^2], (1 -
  4.        L/R) r Cos[t]}, {{t, 0, 2 Pi}, {r, 0, 1.6}}]]
Copy the Code
$L$从0增加到6的曲线族:

$r$从0增加到4的曲线族:

$R$从1.6增加到3.2的曲线族:

$R$从3.2增加到6的曲线族:

手机版Mobile version|Leisure Math Forum

2025-4-21 14:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list