Forgot password?
 Register account
View 1407|Reply 5

小暑&卢沟桥事变&7月7日

[Copy link]

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2019-7-7 12:36 |Read mode
Last edited by 青青子衿 2019-7-7 15:59\[\color{\red}
{\dfrac{7+\sqrt{77}}{7+7}\approx
1+\cfrac{1}{7  
   +\cfrac{1}{1  
    +\cfrac{1}{7
     +\cfrac{1}{1
      +\cfrac{1}{7
       +\cfrac{1}{1
        +\cfrac{1}{7
         +\cfrac{1}{1
          +\cfrac{1}{7
           +\cfrac{1}{1
            +\cfrac{1}{7
             +\cfrac{1}{1
              +\cfrac{1}{7}}}}}}}}}}}}}
}
\]

Related collections:

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2019-7-7 15:17
回复 1# 青青子衿


    这个式子太巧了

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2019-7-7 16:50
Last edited by hbghlyj 2025-4-23 11:05
角**,夜**<xiao****com>  16:14:09
在 10 进制中,有 $\sqrt{77}=7+\frac{7+7}{7+\frac{7}{7+\frac{7}{7+\cdots}}}$ .求证在任意 $n(>3)$ 进制中,存在 $x, y$ ,都是由一个相同非 0 数字构成,满足 $\sqrt{x}=y+\frac{y+y}{y+\frac{y}{y+\frac{y}{y+\cdots}}}$ .
记\[y+\frac y{y+\frac y{y+\cdots}}=A,\](实际上就是连分数 `[y;1,y,1,y,\ldots]` 所以 `A` 的存在性无问题)则 `y+y/A=A`,得
\[A=\frac{y+\sqrt{y(y+4)}}2,\]则
\[y+\frac{y+y}{y+\frac y{y+\frac y{y+\cdots}}}=-y+2y+\frac{2y}{y+\frac y{y+\frac y{y+\cdots}}}=-y+2A=\sqrt{y(y+4)},\]那么当 `y=n-3` 时就有
\[y(y+4)=y(n+1)=\overline{yy},\]即得证。
QQ图片20190707164422.png

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2019-7-11 11:40
\color{\red}
{\dfrac{7+……

好意外,\red.....

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2019-7-11 13:06
回复 4# isee

还是如你上次所说:MathJax 很宽容

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2019-7-11 14:46
回复 5# kuing

或者说 “智能容错”

Mobile version|Discuz Math Forum

2025-6-5 01:25 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit