|
下述关于外心与垂心的向量表达式可以用等角共轭来解释吗?
\begin{align*}
\begin{split}
\overrightarrow{PO}=
& +\dfrac{\sin(2A)\,}{\sin(2A)+\sin(2B)+\sin(2C)}\overrightarrow{PA}\\
&+\dfrac{\sin(2B)\,}{\sin(2A)+\sin(2B)+\sin(2C)}\overrightarrow{PB}\\
&+\dfrac{\sin(2C)\,}{\sin(2A)+\sin(2B)+\sin(2C)}\overrightarrow{PC}
\end{split}
\quad\Longleftrightarrow\quad
\begin{split}
\overrightarrow{PO}=
& +\dfrac{\tan(B)+\tan(C)\,}{2\tan(A)+2\tan(B)+2\tan(C)}\overrightarrow{PA}\\
&+\dfrac{\tan(A)+\tan(C)\,}{2\tan(A)+2\tan(B)+2\tan(C)}\overrightarrow{PB}\\
&+\dfrac{\tan(A)+\tan(B)\,}{2\tan(A)+2\tan(B)+2\tan(C)}\overrightarrow{PC}
\end{split}
\end{align*}
\begin{align*}
\begin{split}
\overrightarrow{PH}=
& +\dfrac{\tan(A)\,}{\tan(A)+\tan(B)+\tan(C)}\overrightarrow{PA}\\
&+\dfrac{\tan(B)\,}{\tan(A)+\tan(B)+\tan(C)}\overrightarrow{PB}\\
&+\dfrac{\tan(C)\,}{\tan(A)+\tan(B)+\tan(C)}\overrightarrow{PC}
\end{split}
\quad\Longleftrightarrow\quad
\begin{split}
\overrightarrow{PH}=
& +\dfrac{\sin(2B)+\sin(2C)-\sin(2A)\,}{\sin(2A)+\sin(2B)+\sin(2C)}\overrightarrow{PA}\\
&+\dfrac{\sin(2A)+\sin(2C)-\sin(2B)\,}{\sin(2A)+\sin(2B)+\sin(2C)}\overrightarrow{PB}\\
&+\dfrac{\sin(2A)+\sin(2B)-\sin(2C)\,}{\sin(2A)+\sin(2B)+\sin(2C)}\overrightarrow{PC}
\end{split}
\end{align*} |
|