Forgot password
 Register account
View 1029|Reply 3

(i,j)=1时 ((i^2 + j) n - i, (j^2 - i) n - j)=1 几乎是正确的

[Copy link]

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2019-7-26 19:16 |Read mode
Last edited by hbghlyj 2024-12-10 11:14当(i,j)=1时,对于任何正整数n,((i^2-j)n-i,(j^2-i)n+j)=1几乎是正确的,仅有少数反例.
Select[Tuples[{Range[5], Range[25], Range[5]}],!CoprimeQ[(#[[1]]^2 -#[[2]]) #[[3]]- #[[1]], (#[[2]]^2 - #[[1]])#[[3]]+#[[2]]] && CoprimeQ[#[[1]], #[[2]]]&]
{{2, 3, 2}, {2, 11, 3}, {3, 8, 3}, {3, 17, 2}, {3, 19, 1}, {4, 15, 4}, {5, 2, 2}, {5, 24, 5}}

3211

Threads

7832

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-12-15 05:03

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2024-3-11 13:41
好像((i^2 + j) n - i, (j^2 - i) n - j)反例最少,625组里只有4组反例
除了不懂,就是装懂

3211

Threads

7832

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-12-10 19:11
睡神 发表于 2024-3-11 05:41
好像((i^2 + j) n - i, (j^2 - i) n - j)反例最少,625组里只有4组反例
确实!625组里只有5组反例
Select[Tuples[{Range[5], Range[25], Range[5]}],!CoprimeQ[(#[[1]]^2+#[[2]]) #[[3]]- #[[1]], (#[[2]]^2 - #[[1]])#[[3]] -#[[2]]] && CoprimeQ[#[[1]], #[[2]]]&]
{{2, 11, 5}, {3, 2, 2}, {3, 7, 1}, {3, 20, 1}, {4, 7, 1}}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:40 GMT+8

Powered by Discuz!

Processed in 0.011147 seconds, 23 queries