Forgot password?
 Create new account
View 872|Reply 3

(i,j)=1时 ((i^2 + j) n - i, (j^2 - i) n - j)=1 几乎是正确的

[Copy link]

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

hbghlyj Posted at 2019-7-26 19:16:05 |Read mode
Last edited by hbghlyj at 2024-12-10 11:14:00当(i,j)=1时,对于任何正整数n,((i^2-j)n-i,(j^2-i)n+j)=1几乎是正确的,仅有少数反例.
Select[Tuples[{Range[5], Range[25], Range[5]}],!CoprimeQ[(#[[1]]^2 -#[[2]]) #[[3]]- #[[1]], (#[[2]]^2 - #[[1]])#[[3]]+#[[2]]] && CoprimeQ[#[[1]], #[[2]]]&]
{{2, 3, 2}, {2, 11, 3}, {3, 8, 3}, {3, 17, 2}, {3, 19, 1}, {4, 15, 4}, {5, 2, 2}, {5, 24, 5}}

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2022-12-15 05:03:22

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2024-3-11 13:41:44
好像((i^2 + j) n - i, (j^2 - i) n - j)反例最少,625组里只有4组反例
除了不懂,就是装懂

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-10 19:11:15
睡神 发表于 2024-3-11 05:41
好像((i^2 + j) n - i, (j^2 - i) n - j)反例最少,625组里只有4组反例

确实!625组里只有5组反例
Select[Tuples[{Range[5], Range[25], Range[5]}],!CoprimeQ[(#[[1]]^2+#[[2]]) #[[3]]- #[[1]], (#[[2]]^2 - #[[1]])#[[3]] -#[[2]]] && CoprimeQ[#[[1]], #[[2]]]&]
{{2, 11, 5}, {3, 2, 2}, {3, 7, 1}, {3, 20, 1}, {4, 7, 1}}

手机版Mobile version|Leisure Math Forum

2025-4-20 12:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list