|
仿照3#链接
%20--%20(4,0)%20node%5Bright%5D%20%7B%24x%24%7D;%0D%0A%20%20%5Cdraw%5B-%3E%5D%20(0,-0.2)%20--%20(0,4)%20node%5Babove%5D%20%7B%24y%24%7D;%0D%0A%0D%0A%20%20%25%20Function%0D%0A%20%20%5Cdraw%5Bcolor=blue,smooth,thick,fill=blue!20%5D%20plot%20(%5Cx,%7Bexp(sin(%5Cx%20r))%7D)node%5Babove%20right%5D%7B%24y=e%5E%7B%5Csin%20x%7D%24%7D%20%7C-%20(0,0)--cycle;%0D%0A%0D%0A%20%20%25%20Limits%0D%0A%20%20%5Cdraw%5Bdashed%5D%20(0,1)%20node%5Bleft%5D%20%7B%241%24%7D%20--%20(pi,1)(pi,0)node%5Bbelow%5D%7B%24%5Cpi%24%7D(0,e)node%5Bleft%5D%7B%24e%24%7D--(pi%2F2,e);%0D%0A%0D%0A%5Cend%7Btikzpicture%7D)
We have:
$$I=\int_{0}^{\pi/2}e^{\sin x}\,dx = \int_{0}^{1}\frac{e^{t}}{\sqrt{1-t^2}}\,dt$$
and since:
$$e^{t}=\sum_{k\geq 0}\frac{ t^k}{k!},\qquad \int_{0}^{1}\frac{t^k}{\sqrt{1-t^2}}\,dt =\int_{0}^{\pi/2}\sin^k\theta\,d\theta=\frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{k+1}{2}\right)}{2\,\Gamma\left(\frac{k}{2}+1\right)}$$
(see Wallis' integrals for more information), it follows that:
$$ I = \sum_{k\geq 0}\frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{k+1}{2}\right)}{2\,\Gamma\left(\frac{k}{2}+1\right)\Gamma(k+1)}=\frac{\pi}{2}\sum_{k\geq 0}\frac1{2^k \Gamma\left(\frac{k}{2}+1\right)^2}=\color{red}{\frac{\pi}{2}\left(I_0(1)+L_0(1)\right)},$$
where $I_0$ and $L_0$ are a Bessel and a Struve function.
|
|