|
仿照3#链接
We have:
$$I=\int_{0}^{\pi/2}e^{\sin x}\,dx = \int_{0}^{1}\frac{e^{t}}{\sqrt{1-t^2}}\,dt$$
and since:
$$e^{t}=\sum_{k\geq 0}\frac{ t^k}{k!},\qquad \int_{0}^{1}\frac{t^k}{\sqrt{1-t^2}}\,dt =\int_{0}^{\pi/2}\sin^k\theta\,d\theta=\frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{k+1}{2}\right)}{2\,\Gamma\left(\frac{k}{2}+1\right)}$$
(see Wallis' integrals for more information), it follows that:
$$ I = \sum_{k\geq 0}\frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{k+1}{2}\right)}{2\,\Gamma\left(\frac{k}{2}+1\right)\Gamma(k+1)}=\frac{\pi}{2}\sum_{k\geq 0}\frac1{2^k \Gamma\left(\frac{k}{2}+1\right)^2}=\color{red}{\frac{\pi}{2}\left(I_0(1)+L_0(1)\right)},$$
where $I_0$ and $L_0$ are a Bessel and a Struve function.
|
|