Forgot password
 Register account
View 1845|Reply 7

[数论] Inverse function of EulerPhi

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2019-8-4 19:04 |Read mode
Last edited by hbghlyj 2023-5-15 13:241,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8,16,6,18,8
oeis.org/A000010
是否存在正整数k,使得关于n的方程φ(n)=k有唯一正整数解
n为奇数时,φ(n)=φ(2n).所以n是偶数.

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2020-1-16 18:40
Last edited by hbghlyj 2021-9-15 04:16ListPlot[Array[EulerPhi, 10000]]

它的上边界是y=x-1,它们是素数
集中的几条直线是谁?
Untitled-1.gif
设p为素数,那么$\phi(p^n)=(p-1)p^{n-1}$对应直线$y=\frac{p-1}px$,$\phi(p^n)=(p-1)p^{n-1}$
这个猜测好像不太对,偏离了一点?
ListPlot[Array[EulerPhi[EulerPhi[#]] &, 10000]]
Untitled-1.gif

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-4-7 05:19
Last edited by hbghlyj 2023-5-15 12:40chaoli.club/index.php/7230
Carmichael's totient function conjecture
Carmichael, R. D. (1922), "Note on Euler's φ-function"

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-5-15 19:37
Last edited by hbghlyj 2024-4-28 16:56
knumbers n such that φ(n) = k (sequence A032447)number of such ns (sequence A014197)
11, 22
23, 4, 63
45, 8, 10, 124
67, 9, 14, 184
815, 16, 20, 24, 305
1011, 222
1213, 21, 26, 28, 36, 426
1617, 32, 34, 40, 48, 606
1819, 27, 38, 544
2025, 33, 44, 50, 665
2223, 462
2435, 39, 45, 52, 56, 70, 72, 78, 84, 9010
2829, 582
3031, 622
3251, 64, 68, 80, 96, 102, 1207
3637, 57, 63, 74, 76, 108, 114, 1268
4041, 55, 75, 82, 88, 100, 110, 132, 1509
4243, 49, 86, 984
4469, 92, 1383
4647, 942
4865, 104, 105, 112, 130, 140, 144, 156, 168, 180, 21011
5253, 1062
5481, 1622
5687, 116, 1743
5859, 1182
6061, 77, 93, 99, 122, 124, 154, 186, 1989
6485, 128, 136, 160, 170, 192, 204, 2408
6667, 1342
7071, 1422
7273, 91, 95, 111, 117, 135, 146, 148, 152, 182, 190, 216, 222, 228, 234, 252, 27017

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-5-15 21:15

正好有 2 个解

A007366 Numbers $k$ such that $\varphi(x) = k$ has exactly 2 solutions.
Contains $\Set{2\cdot3^{6k+1}| k \ge 1}$ as a subsequence. This is the simplest proof for the infinity of these numbers (see Sierpiński, Exercise 12, p. 237)

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-4-29 01:08

若$\varphi(n)=2\cdot3^{6k+1}$,求证$n=3^{6k+2}$ or $2\cdot3^{6k+2}$

若$\varphi(n)=2\cdot3^{6k+1}$,求证$n=3^{6k+2}$ or $2\cdot3^{6k+2}$


相关:若$\varphi(n)=2$,求证$n \le 6$

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2024-4-29 12:48
这个好像不难

显然,$3\mid n $

1、当$n=3^{\alpha_1}$时,$\varphi(n)=2\cdot 3^{\alpha_1-1}$,此时$\alpha_1=6k+2$,即$n=3^{6k+2}$

2、当$n=3^{\alpha_1}\cdot p^{\alpha_2}$时,$\varphi(n)=2\cdot(p-1)\cdot 3^{\alpha_1-1}\cdot p^{\alpha_2-1}$

假设$p\ge 5$,则$2\mid (p-1)$

此时  $\varphi(n)=2^t\cdot x\cdot 3^{\alpha_1-1},t\ge 2$矛盾

所以  $p=2$

所以  $\alpha_1=6k+2,\alpha_2=1$,即$n=2\cdot 3^{6k+2}$

3、假设$n$至少存在3个素因数

设$n=3^{\alpha_1}\cdot p^{\alpha_2}_2\cdot \cdots \cdot p^{\alpha_m}_m,m\ge 2$

$\varphi(n)=2\cdot (p_2-1)\cdot \cdots \cdot (p_m-1)\cdot 3^{\alpha_1-1}\cdot p^{\alpha_2-1}_2\cdot \cdots \cdot p^{\alpha_m-1}_m=2^t\cdot x\cdot 3^{\alpha_1-1},t\ge m\ge 2$矛盾
除了不懂,就是装懂

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-4-29 22:56

$\varphi(x) = k$ 正好有 3 个解

睡神 发表于 2024-4-29 04:48
此时  $\varphi(n)=2^t\cdot x\cdot 3^{\alpha_1-1},t\ge 2$矛盾
谢谢!还有一个类似的:

A085713 Numbers $k$ such that $\varphi(x) = k$ has exactly 3 solutions.

如果 $\varphi(x) = k$ 正好有 3 个解,则这 3 个解为$(3p, 4p, 6p)$, 其中 $p$ 是 1 或素数。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:10 GMT+8

Powered by Discuz!

Processed in 0.057910 seconds, 31 queries