Forgot password?
 Register account
View 2040|Reply 4

[不等式] 三角形中求最小值

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2019-9-4 08:40 |Read mode
(1)在$\triangle ABC$中,求$P=2cotA+3cotB+4cotC$的最小值。
(2)能否推广一下:在$\triangle ABC$中,若$p,q,r>0$,求$P=pcotA+qcotB+rcotC$的最小值。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-9-4 11:57
和你以前问过的这帖 forum.php?mod=viewthread&tid=5534 是等价的

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2019-9-4 17:45
回复 2# kuing
这么难搞呀

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2020-1-23 00:41
无意中,回看了这帖,算了一下:
(2)的最小值:$\sqrt{4pq-(p+q-r)^2}$,前提是$2pq+2qr+2rp\geqslant p^2+q^2+r^2$.不知是否正确?
另外,又想到了几个问题:
问题(1)在$\triangle ABC$中,若$p,q,r>0$,求$psinA+qsinB+rsinC$是否有最值?
问题(2)在$\triangle ABC$中,若$p,q,r>0$,求$pcosA+qcosB+rcosC$是否有最值?
问题(3)在$\triangle ABC$中,若$p,q,r>0$,求$ptanA+qtanB+rtanC$是否有最值?
对于问题(2),用嵌入不等式,可得最大值为$\dfrac{1}{2}(\dfrac{pq}{r}+\dfrac{qr}{p}+\dfrac{rp}{q})$.
其它问题呢?

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2020-1-28 13:19
回复 4# lemondian
顶一下子

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit