Forgot password?
 Register account
View 1819|Reply 3

[不等式] 两个不等式 求个思路

[Copy link]

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2019-9-6 17:44 |Read mode
Last edited by facebooker 2019-9-7 02:291)$a,b,c>0.\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c$
Prove:\[\dfrac{1}{(2a+b+c)^2}+\dfrac{1}{(2b+c+a)^2}+\dfrac{1}{(2c+a+b)^2}\leqslant \frac{3}{16}\]

2)$\cos^2A+\cos^2B+\cos^2C=2$
Prove:\[\sum\dfrac{\sin A\sin B}{\cos A\cos B}\leqslant \frac{2}{3}\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-9-7 01:42
1)$a,b,c>0.\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=abc$
Prove:\[\dfrac{1}{(2a+b+c)^2}+\dfrac{1}{(2b+c+a)^2}+\dfrac{1}{(2c+a+b)^2}\leqslant \frac{3}{16}\]facebooker 发表于 2019-9-6 17:44
(1)抄错题风险提示:
我之前在 forum.php?mod=viewthread&tid=6340 证过待证式相同但条件不同的题。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-9-7 02:05
2)$\cos^2A+\cos^2B+\cos^2C=2$
Prove:\[\sum\dfrac{\sin A\sin B}{\cos A\cos B}\leqslant \frac{2}{3}\]facebooker 发表于 2019-9-6 17:44
(2)为何不干脆写成 `\sum\tan A\tan B`??

由条件可令 `\cos^2A=(y+z)/(x+y+z)` 等,其中 `x`, `y`, `z>0`,则
\[
\abs{\tan A}=\sqrt{\frac1{\cos^2A}-1}=\sqrt{\frac x{y+z}},
\]所以
\begin{align*}
\LHS&\leqslant\sum\abs{\tan A\tan B}\\
&=\sum\sqrt{\frac{xy}{(y+z)(z+x)}}\\
&\leqslant\frac12\sum\left( \frac y{y+z}+\frac x{z+x} \right)\\
&=\frac32.
\end{align*}

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

 Author| facebooker Posted 2019-9-7 02:30
回复 2# kuing


多谢提醒 已经改正

Mobile version|Discuz Math Forum

2025-5-31 11:10 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit