Forgot password?
 Create new account
View 692|Reply 1

筛选某类有理数域上的可约多项式

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2019-10-23 15:58:55 |Read mode
Table[With[{expr = (x^2 + p*x + q)^2 + (x^2 + u*x + v)^2},
     If[p*q*u*v != 0 && SquareFreeQ[expr] && ! IrreduciblePolynomialQ[expr],
      expr == Factor[expr], Nothing]],
     {p, 1, 5}, {q, p, 5}, {u, q, 5}, {v, u, 5}] // Flatten // Column // TraditionalForm

\begin{alignat*}{3}
(x^2+x+1)^2+{}&&(x^2+2x+3)^2={}&&(x^2+2x+2) &&(2x^2+2x+5)\\
(x^2+x+2)^2+{}&&(x^2+3x+4)^2={}&&2 (x^2+2x+2) &&(x^2+2x+5)\\
(x^2+x+3)^2+{}&&(x^2+4x+5)^2={}&&(x^2+2x+2) &&(2x^2+6x+17)\\
(x^2+2x+3)^2+{}&&(x^2+3x+3)^2={}&&(x^2+2x+2)&&(2x^2+6x+9)\\
(x^2+2x+4)^2+{}&&(x^2+4x+4)^2={}&&2(x^2+2x+2)&&(x^2+4x+8)\\
(x^2+2x+5)^2+{}&&(x^2+5x+5)^2={}&&(x^2+2x+2){}&&(2x^2+10x+25)\\
(x^2+3x+3)^2 +{}&&(x^2+4x+4)^2={}&&(x^2+4x+5)&&(2x^2+6x+5)\\
(x^2+4x+5)^2+{}&&(x^2+5x+5)^2={}&&(x^2+6x+10)&&(2x^2+6x+5)
\end{alignat*}

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2019-10-23 17:02:29
内容看不懂,只说说后面那代码,最后一列的 && 应该去掉一个,即
\begin{alignat*}{3}
(x^2+x+1)^2+{}&&(x^2+2x+3)^2={}&&(x^2+2x+2)&(2x^2+2x+5)\\
.......

手机版Mobile version|Leisure Math Forum

2025-4-20 22:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list