Forgot password?
 Create new account
View 727|Reply 0

收集与参数无关的有理广义积分

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2019-10-26 16:08:05 |Read mode
Last edited by 青青子衿 at 2019-10-28 10:28:00\begin{align*}
\int_0^{+\infty}\dfrac{1}{(1+x)^2\left(1+x^{\alpha}\right)}\mathrm{d}x&=\dfrac{1}{2}\\
\int_0^{+\infty}\dfrac{x}{(1+x)^4\left(1+x^{\alpha}\right)}\mathrm{d}x&=\dfrac{1}{12}\\
\int_0^{+\infty}\dfrac{1}{(1+x^2)\left(1+x^{\alpha}\right)}\mathrm{d}x&=\dfrac{\pi}{4}\\
\int_0^{+\infty}\dfrac{1}{(1+x+x^2)\left(1+x^{\alpha}\right)}\mathrm{d}x&=\dfrac{\pi}{3\sqrt{\,3}}\\
\int_0^{+\infty}\dfrac{1}{(1-x+x^2)\left(1+x^{\alpha}\right)}\mathrm{d}x&=\dfrac{2\pi}{3\sqrt{\,3}}\\
\int_0^{+\infty}\dfrac{1}{(1+\frac{1}{2}x+x^2)\left(1+x^{\alpha}\right)}\mathrm{d}x&=\dfrac{\pi+2\operatorname{arccot}\sqrt{15}}{\sqrt{15}}\\
\int_0^{+\infty}\dfrac{1}{(1-\frac{1}{2}x+x^2)\left(1+x^{\alpha}\right)}\mathrm{d}x&=\dfrac{\pi-2\operatorname{arccot}\sqrt{15}}{\sqrt{15}}\\
\end{align*}

手机版Mobile version|Leisure Math Forum

2025-4-22 03:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list