Forgot password
 Register account
View 829|Reply 0

收集与参数无关的有理广义积分

[Copy link]

461

Threads

952

Posts

4

Reputation

Show all posts

青青子衿 posted 2019-10-26 16:08 |Read mode
Last edited by 青青子衿 2019-10-28 10:28\begin{align*}
\int_0^{+\infty}\dfrac{1}{(1+x)^2\left(1+x^{\alpha}\right)}\mathrm{d}x&=\dfrac{1}{2}\\
\int_0^{+\infty}\dfrac{x}{(1+x)^4\left(1+x^{\alpha}\right)}\mathrm{d}x&=\dfrac{1}{12}\\
\int_0^{+\infty}\dfrac{1}{(1+x^2)\left(1+x^{\alpha}\right)}\mathrm{d}x&=\dfrac{\pi}{4}\\
\int_0^{+\infty}\dfrac{1}{(1+x+x^2)\left(1+x^{\alpha}\right)}\mathrm{d}x&=\dfrac{\pi}{3\sqrt{\,3}}\\
\int_0^{+\infty}\dfrac{1}{(1-x+x^2)\left(1+x^{\alpha}\right)}\mathrm{d}x&=\dfrac{2\pi}{3\sqrt{\,3}}\\
\int_0^{+\infty}\dfrac{1}{(1+\frac{1}{2}x+x^2)\left(1+x^{\alpha}\right)}\mathrm{d}x&=\dfrac{\pi+2\operatorname{arccot}\sqrt{15}}{\sqrt{15}}\\
\int_0^{+\infty}\dfrac{1}{(1-\frac{1}{2}x+x^2)\left(1+x^{\alpha}\right)}\mathrm{d}x&=\dfrac{\pi-2\operatorname{arccot}\sqrt{15}}{\sqrt{15}}\\
\end{align*}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 12:19 GMT+8

Powered by Discuz!

Processed in 0.014939 second(s), 22 queries

× Quick Reply To Top Edit