Forgot password
 Register account
View 1011|Reply 0

三道多项式问题

[Copy link]

3156

Threads

7932

Posts

45

Reputation

Show all posts

hbghlyj posted 2019-11-5 07:10 |Read mode
Last edited by hbghlyj 2019-11-12 22:09(1)$f_0(x)=a^4+a^3 b+a^2 b^2+a b^3+b^4,f_{n+1}(x)=(a^{3\cdot2^n}-a^{2\cdot2^n}b^{2^n}+a^{2^n}b^{2\cdot2^n}-b^{3\cdot2^n})f_n(x)$,证明:$\forall n \in \Bbb{N}$,多项式$f_n(x)$的系数的绝对值全为1
无标题.png
(2)2019次多项式f(x)存在三个正整数不动点.证明:多项式f(x)存在一个系数不为整数。
(3)已知多项式$P(x)=x^8-4x^7+7x^6+ax^5+bx^4 +cx^3+dx^2+ex+f$有8个正实根,求f的所有可能值。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 19:04 GMT+8

Powered by Discuz!

Processed in 0.015743 second(s), 25 queries

× Quick Reply To Top Edit