|
kuing
Posted 2019-12-4 18:27
两个结论其实是同一个结论。
实际上是调和点列的事:
`\triangle MAB` 中,`\angle AMB` 的内角平分线及外角平分线分别交 `AB` 于 `P`, `Q`,则 `A`, `P`, `B`, `Q` 是调和点列。
反之:
若 `A`, `P`, `B`, `Q` 是调和点列,点 `M` 满足 `PM\perp MQ`,则 `PM`, `MQ` 分别是 `\angle AMB` 的内角平分线及外角平分线。
所以其实没椭圆什么事。 |
|