|
Author |
hbghlyj
Posted at 2020-2-5 13:09:50
Last edited by hbghlyj at 2021-5-31 21:50:001.$x,y \in {\bf{R}},$函数$f_i(i=1,2,\cdots,n)$满足\[f\left[ {2f\left( x \right) + f\left( y \right)} \right] = f\left( x \right) + f\left( y \right) + x\],则\[\sum\limits_{i = 1}^n {\sum\limits_{x = 1}^k {{h_i}(x)} } = \]
2.$f\left( x \right) = {f_1}(x) = 1 + \frac{1}{x},{f_n}(x) = f({f_{n - 1}}(x)),$则\[\mathop {\lim }\limits_{n \to \infty } {f_n}(1) = \]
3.数列$\{a_n\}$满足${a_n} \le 1,{a_n} = 1,{a_{n - 1}} = 4{a_n} - 2a_n^2,$,则$\{a_n\}$的通项公式为
4.m,n是$\ge$2的整数,对任意正数${a_1},{a_2}, \cdots ,{a_n}$,记${S_k} = \sum\limits_{i = 1}^k {{a_i}}$,\[\sum\limits_{k = 1}^n {\frac{{lk + \frac{1}{4}{l^2}}}{{{S_k}}} < {m^2}\sum\limits_{k = 1}^n {\frac{1}{{{a_k}}}} } \]恒成立,求自然数l的取值范围
5.设函数\[y = kx - k\ln x - \frac{{{e^x}}}{x}\left( {0 < k < e} \right)\]的值域为A,B=(-1,+∞),若$A \cap B = \emptyset $,则k的最大值为
6.\[\int_0^{\frac{\pi }{4}} {\ln \left( {1 + \tan x} \right){\text{dx}}} + \int_0^1 {x\sqrt {x\left( {1 - x} \right)} {\text{dx}}} + \int_0^1 {\sqrt {\left( {1 + x} \right)\left( {1 - x} \right)} {\text{dx}}} = \]
7.所有不大于实数$x\ge2$的质数之积小于$4^{x-1}$,即\[\prod\limits_{\begin{array}{*{20}{c}}
{p\le x}\\
{p \in P}
\end{array}} p < {4^{x - 1}},\forall x\ge2\]
8.数列$\{a_n\}$和$\{b_n\}$满足
Ⅰ对于任意正整数n,都有$a_n,b_n$是整数,
Ⅱ$x^2+a_nx+b_n=0$的两根分别为$a_{n+1}$和$b_{n+1}$;
(i)证明:存在正整数m使得$|b_m|=|b_{m+1}|=|b_{m+2}|=\cdots$;
(ii)求所有满足条件的数列的通项公式
9.求$\frac{yz}x+\frac{zx}y+\frac{xy}z=3$的整数解(x,y,z)
由$x^2+y^2+z^2\ge xy+yz+zx$得$|x|+|y|+|z|\le3$,因此整数解(x,y,z)有(1,1,1)(-1,-1,1)(-1,1,-1)(1,-1,-1)四组.
10.用朗博W函数给出$r^x-1=x$的解
设$a\cdot e^a=-\frac{\ln r}{r}$
$x=-\frac{a}{\ln r}-1=\frac1{re^a}-1$
$r^x=\frac1{r\cdot r^{\frac a{\ln r}}}=\frac1{r\cdot e^{a}}=\frac1{re^a}=x+1$
所以$x=1-\frac{W\left(-\frac{\ln r}{r}\right)}{\ln r}$
11.a,b>0,a+b=1,求$\frac{27}{a^2}+\frac1{b^2}$的取值范围
$\frac{27}{a^2}+\frac1{b^2}=\left(\frac3a-\frac1b\right)^2+6\left(\frac{3}{a^2}+\frac1{ab}\right)=\left(\frac3a-\frac1b\right)^2+6\left(\frac{3(a+b)^2}{a^2}+\frac{(a+b)^2}{ab}\right)=\left(\frac3a-\frac1b\right)^2+6\left(5+\frac{7b}a+\frac{3b^2}{a^2}+\frac ab\right)=\left(\frac3a-\frac1b\right)^2+6\left(\frac{14}3+\frac{9b}a+\frac ab+3\left(\frac{b}a-\frac13\right)^2\right)\ge64$
当a或b趋于0时原式趋于$\infty$,故$\frac{27}{a^2}+\frac1{b^2}\in[64,+\infty)$
又见这帖
12.数列$\an$满足$0\le a_1\le 1$,$a_{n+1}=\frac{4a_n+t}{a_n+2}(t\in\mathbb R)$,若对任意正整数n都有$0<a_n<a_{n+1}<3$,则t的取值范围为
[0,3]
13.用$M_I$表示函数$y=\sin x$在闭区间I上的最大值,若正数a满足 $M_{[0,a]}=\sqrt2M_{[a,2a]}$则a=
14.过点A(11,2)作圆$ x^2 + y^2+2x-4y-164=0$ 的弦,其中弦长为整数的共有___条.
15.在正八棱锥中,相邻两个侧面所成的二面角的取值范围是___
16.从正方体六个面的对角线中任取两条作为一对,其中所成角为 60∘的共有___对。
17.设平面内有 n(n≥3)条直线,其中有且仅有两条直线互相平行,任意三条直线
不过同一点。若ƒ(n)表示这n条直线交点的个数,则ƒ(6)=___
18.单位圆的内接五边形的所有边及所有对角线的长度的平方和的最大值为___
PS:f的斜体竟然可以直接打出来:ƒ
19.在水平地面上的不同两点处安装有两根笔直的电线杆,假设它们都垂直于地面,则在水平地面上视它们上端仰角相等的点P的轨迹可能是___(选填 椭圆,抛物线,直线,圆)
20.
21.已知y,z,x>0,求证:$\frac{z+x}{2y} + \frac{x+y}{2z} + \frac{y+z}{2x}≥\frac{2y}{z+x}+\frac{2z}{y+x}+\frac{2x}{y+z}$
22.从$x\sin \theta + y\cos \theta = \sqrt {{x^2} + {y^2}}$和$\frac{{{{\sin }^2}\theta }}{9}\;{\rm{ - }}\;\frac{{{{\cos }^2}\theta }}{4}\;{\rm{ = }}\;\frac{1}{{{x^2} + {y^2}}}$中消去参数$\theta$
$x^2-\frac{9 y^2}{4}=9$
23.设函数$f_n(x)=- 1 + x + \frac{{{x^2}}}{{{2^2}}} + \frac{{{x^3}}}{{{3^2}}} + \cdots + \frac{{{x^n}}}{{{n^2}}}$,证明:对任意正整数n,存在唯一的$x_n\in\left[\frac23,1\right],$满足$f_n(x_n)=0$
24.设D是所有模小于1的复数构成的集合,对任意正整数n和互异的复数$z_1,z_2,\cdots,z_n$,定义
\[W(z_1,z_2,\cdots,z_n)=\sum\limits_{1\le j<k\le n}\ln\left|z_j-z_k\right|^2+\sum\limits_{j=1}^n\sum\limits_{k=1}^n\ln\left|1-z_j\overline{z_k}\right|^2\]
25.已知虚数$z_1=a+bi,z_2=2+di$($a,b,d∈\mathbf R$且d≠0)满足$z_1+z_2=z_1z_2$,则a+b的取解:$a=2+bd,b=(1-a)d$,$b=-\frac d{1+d^2},a+b=2-\frac {d(d+1)}{1+d^2}=1-\frac {1}{d+1+\frac2{d-1}}\ge\frac32$
26.若$f(x)=x\ln x-(x+\ln x)+\frac k4>0$对任意x>0恒成立,求正整数k的最小值
27.求$\sum\limits_{n=1}^\infty\frac{4^n(n-1)(-1)^{n-1}}{(2n-1)!}$
28.直线$L_1 : 2x+y-8=0$交x轴于点A,直线$L_2:y= kx+6$与y轴交于点B,与直线$L_n$交于点C,若四边形OACB存在外接圆,则四边形OACB的面积与其外接圆的面积之比为____
29.设一元三次方程$x^3-3\sqrt3x^2-3x+\sqrt3=0$的三个实根分别为$x_1<x_2<x_3$,则$\frac{x_3}{x_2}(1-x_2^2)(1-x_1^2)$的值为
30.$x=\sqrt{\frac{\sqrt{53}}2+\frac32},$求正整数组(a,b,c)满足\[x^{100}=2x^{98}+14x^{96}+11x^{94}-x^{50}+ax^{46}+bx^{44}+cx^{40}\]
31.设$F(x)=\max\limits_{1\le x\le 3}|x^3-ax^2-bx-c|$,当a,b,c取遍所有实数时,求$F_{min}$
32.已知数列$\left\{a_{n}\right\},a_{1}=2,a_{n+1}=\frac{1}{2}\left(a_{n}-\frac{1}{a_{n}}\right),$求通项$a_{n}$
不动点没有实根
采用三角代换,$a_n=\cot\alpha$,则$a_{n+1}=\cot2\alpha$,归纳得$a_n=\cot\left(2^{n-1}\operatorname{arccot}2\right)$
33.$a,b,c,d>0,a+b\ge c+d,a^{-1}+b^{-1}\ge c^{-1}+d^{-1}$,求证$(a+b)(c+d)\ge2(ab+cd)$
注意到恒等式$-a b c-a b d+a c d+b c d=-\frac{1}{2} \left(c^2+d^2\right) (a+b-c-d)-\frac{1}{4} (c+d) (2 a-c-d) (2 b-c-d)-\frac{1}{4} (c+d) (c-d)^2$
由$-a b c-a b d+a c d+b c d\ge0,a+b-c-d\ge0$得$(2 a-c-d) (2 b-c-d)\le0$,由于a,b地位对称,不妨设$2 b-c-d\le0$,所以
$(a+b)(c+d)-2(ab+cd)=(a+b-c-d)(-2b+c+d)+(b-c)^2+(b-d)^2\ge0$
34.求$6 \sin x+\cos x+5 \sin 2 x $的最大值
\begin{array}{l}
6 \sin x+\cos x+5 \sin 2 x \\
=\frac{51}{5}-\frac{25}{4}\left(\sin x-\cos x-\frac{1}{5}\right)^{2}-\frac{5}{4}\left(\sin x+\cos x-\frac{7}{5}\right)^{2} \\
\leq \frac{51}{5}
\end{array}
35.设实数$a_1,a_2,\cdots,a_n$满足$\sum\limits_{i=1}^na_i=0$.证明$\dfrac n{n-1}\min\{a_1,a_2,\cdots,a_n\}\ge\sum\limits_{i=1}^n\min\{a_i,a_{i+1}\}$,其中$a_{n+1}=a_1.$
证明:不妨设$a_1\le a_2\le\cdots\le a_n$,要证明$a_1=-\sum\limits_{i=2}^na_i\ge -(n-1)a_n\Rightarrow \dfrac n{n-1}a_1\ge a_1-a_n=a_1+\sum\limits_{i=1}^{n-1}a_i$
36.$a,b,c\in\mathbf{R},a+b+c=0,abc=1,$求$\sum\frac{a^2}b$的取值范围
$\sum\frac{a^2}b=\sum ca^3=\sum ca^2\sum a-\sum c^2a^2-abc\sum a=-\sum c^2a^2=-(\sum bc)^2+2abc\sum a=-(\sum bc)^2$,设$s=\sum bc$,由于a,b,c不全相等,且a,b,c符合方程$x^3 + s x - 1=0$,所以它至少有两个不等的实根,故$\Delta=-4s^3-27\ge0,s\le-\frac3{\sqrt[3]4}$,所以$\sum\frac{a^2}b\le-\frac9{2\sqrt[3]2}$
37.设整数$n \geq 2, x_{1}, x_{2}, \cdots, x_{n}$为整数满足$x_{1}+x_{2}+\cdots+x_{n}=x_{1} x_{2} \cdots x_{n}$,证明:$1<\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \leq 2$
38.是否存在实数$x_{i}(1 \leq i \leq 10)$,使得$\sum_{i=1}^{10} x_{i}=0, \sum_{i=1}^{10} x_{i}^{2}=990$,且$\min _{1 \leq i<j \leq 10}\left|x_{i}-x_{j}\right|>4$ |
|