Forgot password?
 Create new account
View 1579|Reply 2

[数列] 一道数列与三角相结合的最值问题

[Copy link]

32

Threads

42

Posts

405

Credits

Credits
405

Show all posts

longma Posted at 2019-12-26 09:57:46 |Read mode
Last edited by hbghlyj at 2025-4-6 03:42:47如果方程组 $\left\{\begin{array}{l}\sin x_1+\sin x_2+\cdots+\sin x_n=0 \\ \sin x_1+2 \sin x_2+\cdots+n \sin x_n=2019\end{array}\right.$有实数解,则正整数 $n$ 的最小值是 $\qquad$ .

109

Threads

226

Posts

2915

Credits

Credits
2915

Show all posts

facebooker Posted at 2019-12-27 15:27:35
\begin{equation}
\left\{
\begin{aligned}
\sin x_1+\sin x_2+\cdots +\sin x_n &=0 \\
\sin x_1+2\sin x_2+\cdots +n\sin x_n  &=2019
\end{aligned}\\
prove:\sin x_1+2\sin x_2+\cdots +n\sin x_n\leqslant [\dfrac{n^2}{4}]
\right.
\end{equation}

32

Threads

42

Posts

405

Credits

Credits
405

Show all posts

 Author| longma Posted at 2020-1-1 16:22:00
回复 3# facebooker


“非死不可”大虾,这个怎么证?

手机版Mobile version|Leisure Math Forum

2025-4-20 22:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list