|
Last edited by hbghlyj at 2022-10-24 23:00:00
- 简述有界变差数列,并证明:有界变差数列一定收敛.
令$y_{n}=\left|x_{n}-x_{n-1}\right|+\left|x_{n-1}-x_{n-2}\right|+\ldots+\left|x_{2}-x_{1}\right|(n=2,3, \ldots)$. 若$y_n$有界, 则$x_n$称为有界变差数列.
下面证明 有界变差数列一定收敛:
$\{y_n\}$单调递增且有上界,所以$\{y_n\}$收敛。由柯西收敛准则,对任意$\varepsilon>0$,存在正整数$N$,当$m>n>N$时有$\left|y_{m}-y_{n}\right|<\varepsilon$,即$$\left|x_{m}-x_{m-1}\right|+\left|x_{m-1}-x_{m-2}\right|+\ldots+\left|x_{n+1}-x_{n}\right|<\varepsilon$$于是对数列$\{x_n\}$,当$m>n>N$时有$$\left|x_{m}-x_{n}\right| \leq\left|x_{m}-x_{m-1}\right|+\left|x_{m-1}-x_{m-2}\right|+\ldots+\left|x_{n+1}-x_{n}\right|<\varepsilon$$所以数列$\{x_n\}$收敛。反之不一定成立,例如数列$1,-1, \frac{1}{2},-\frac{1}{2}, \frac{1}{3},-\frac{1}{3}, \ldots, \frac{1}{n},-\frac{1}{n}, \ldots$收敛到0但不是有界变差的,事实上,\begin{array}{l}\left|x_{2}-x_{1}\right|+\left|x_{3}-x_{2}\right|+\ldots+\left|x_{2 n}-x_{2 n-1}\right| \\ >\left|x_{2}-x_{1}\right|+\left|x_{4}-x_{3}\right|+\ldots+\left|x_{2 n}-x_{2 n-1}\right|\\=2\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)\\\to\infty\quad\text{当}\ n\to\infty\end{array}
- 若$f(x)$在区间$I$上处处连续,且为一一映射,则$f(x)$在$I$上必为严格单调.
证明:对$a,b\in I,a< b$, 设$f(a)< f(b)$, 我们证明对任意$x\in(a,b)$,有$f(a)< f(x)$[同理可证$f(x)< f(b)$].
由于$f$是单射,有 $f(x)\ne f(a)$, 只需证明$f(a)> f(x)$不成立. 假设$f(a)>f(x)$, 由介值定理, 存在$ξ\in(x,b)$使得$f(ξ)=f(a)$, 与$f$是单射矛盾. 证毕.
- 设$f(x)$在区间$[a,b]$上非负且三阶可导,方程$f(x)=0$在$(a,b)$内有两个不同实根.证明\(\exists\xi \in (a,b)\)使\(f^{(3)}(\xi) = 0\).
设$f(x)$在$(a,b)$内的两个不同实根为$α<γ$. 因为$f(α)=f(γ)=0$,由罗尔定理存在$f'$的一个根$β∈(α,γ)$.
因为$f(α)=f(γ)=0$, 而$f$非负, 所以$α,γ$是极小值, 所以$α,γ$是$f'$的根.
由罗尔定理存在$f''$的一个根$x_1∈(α,β)$和一个根$x_2∈(β,γ)$. 由罗尔定理存在$f'''$的一个根$\xi∈(x_1,x_2)$. 证毕.
- 设$f(x)$在区间$[a,b]$上连续,求证\[\int_{a}^{b}{f(x)}dx = \int_{a}^{b}{f(a + b - x)dx}\]并计算\[\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{(\cos x)^{2}}{x(\pi - 2x)}dx\]
\begin{align*}
I&=\int_{\frac\pi 6}^{\frac \pi 3} \frac{\cos^2x}{x(\pi-2x)}\,dx\\
\small\text{对$a=\frac\pi6,b=\frac\pi3$使用公式}&=\int_{\frac\pi 6}^{\frac \pi 3} \frac{\cos^2\left(\frac \pi 2 - x\right)}{\left(\frac \pi 2 - x\right)2x}\,dx\\
&=\int_{\frac\pi 6}^{\frac \pi 3} \frac{\sin^2\left(x\right)}{\left(\pi - 2x\right)x}\,dx\\
&=\int_{\frac\pi 6}^{\frac \pi 3} \frac{1}{\left(\pi - 2x\right)x}\,dx - \int_{\frac\pi 6}^{\frac \pi 3} \frac{\cos^2\left(x\right)}{\left(\pi - 2x\right)x}\,dx\\
移项\implies 2I &= \int_{\frac\pi 6}^{\frac \pi 3} \frac{1}{\left(\pi - 2x\right)x}\,dx \\
部分分式&=\frac 1 \pi\int_{\frac\pi 6}^{\frac \pi 3} \frac{1}{x} + \frac{2}{\pi -2x}\,dx\\
除以2\implies I&=\frac{1}{2\pi}\left[\log x -\log(\pi -2x)\right]^{\frac \pi 3}_{\frac\pi 6}\\
&=-\frac{1}{2\pi}\left(\log \frac \pi 6 -\log\frac{4\pi}{6} \right) \\
&=\frac{1}{\pi}\log2
\end{align*}
- 比较\((\sqrt{n})^{\sqrt{n + 1}}\)与\((\sqrt{n + 1})^{\sqrt{n}}\)的大小,取$n>8$.
解:因为$\ln x\over x$在(e,+∞)上递减.当$n>8$时,$\sqrt{n}>\sqrt8>e$,所以\(\frac{\ln\sqrt{n+1}}{\sqrt{n+1}}\lt\frac{\ln\sqrt{n}}{\sqrt{n}}\),即\((\sqrt{n})^{\sqrt{n + 1}}\gt(\sqrt{n + 1})^{\sqrt{n}}\).
- 设$f(x)$在任意的有穷区间$[0,A]$上黎曼可积,且\(\lim_{x \rightarrow + \infty}f(x) = 0\)求证: \[\lim_{x \rightarrow + \infty}\frac{1}{t}\int_{0}^{t}\left| f(x) \right|dx = 0\]
- 证明\(\int_{0}^{+ \infty}x^{2}e^{-xy}\mathrm dy\)在$x>0$上一致收敛.
- 证明:对连续函数$f(x)$有\[∭_{x^2 + y^2 + z^2 = 1}f(z)ds = 2\pi\int_{-1}^1f(t)dt\]
球坐标系换元: $\displaystyle\mathbf r=\pmatrix{x\\y\\z} =\begin{pmatrix}r\sin \theta \,\cos \varphi \\r\sin \theta \,\sin \varphi \\r\cos \theta \end{pmatrix}$,我们有$$\mathrm {d} s=\left\|{\frac {\partial {\mathbf {r} }}{\partial \theta }}\times {\frac {\partial {\mathbf {r} }}{\partial \varphi }}\right\|\mathrm {d} \theta \,\mathrm {d} \varphi =\left|r{\hat {\boldsymbol {\theta }}}\times r\sin \theta {\boldsymbol {\hat {\varphi }}}\right|=r^{2}\sin \theta \,\mathrm {d} \theta \,\mathrm {d} \varphi$$取$r=1$,有$$\mathrm ds=\sin\theta\,\mathrm d\theta\,\mathrm d\varphi$$所以\begin{align*}∭_{r=1}f(z)ds&=\int_0^{2\pi}\mathrm d\phi\int_0^\pi f(\cos\theta)\sin\theta\,\mathrm d\theta\\
&=2\pi\int_0^\pi f(\cos\theta)\sin\theta\,\mathrm d\theta\\
&=-2\pi\int_0^\pi f(\cos\theta)(-\sin\theta)\,\mathrm d\theta\\
&=2\pi\int_{-1}^{1}f(t)dt\qquad\text{换元}t=\cos\theta
\end{align*}
- 已知$f(x)$可导,$f(x)+f'(x)→a$,($x→+∞$).则$x→+∞$时有$f(x)→a$,$f'(x)→0$.
证明:$\lim_{x→+∞}f(x)=\lim_{x→+∞}\frac{e^x\cdot f(x)}{e^x}=\lim_{x→+∞}\frac{(e^x\cdot f(x))'}{(e^x)'}=\lim_{x→+∞}f(x)+f'(x)=a$⇒$\lim_{x→+∞}f'(x)=a-a=0$.
|
|