Forgot password?
 Create new account
View 1636|Reply 2

[几何] 来自讨论组的垂足三角形外接圆半径

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2020-3-8 16:35:49 |Read mode
**寒,**珊 10:42:36
高线的垂足形成的三角形,其外接圆半径与原三角形外接圆半径有什么关系吗?

kuing 15:27:17
两倍关系
QQ图片20200308163323.png
\[2R_{\triangle ABC}=\frac{BC}{\sin A}, 2R_{\triangle DEF}=\frac{EF}{\sin\angle EDF},\]故
\[\frac{R_{\triangle ABC}}{R_{\triangle DEF}}=\frac{BC}{EF}\cdot\frac{\sin\angle EDF}{\sin A}=\frac{AB}{AE}\cdot\frac{\sin(\pi-2A)}{\sin A}=\frac{\sin 2A}{\cos A\sin A}=2.\]
kuing 15:46:22
我发现好像小圆圆心在大圆圆心和垂心的中点上
kuing 16:01:33
哦,想起了九点圆,三垂足和三中点共圆,所以显然就是两倍关系了[笑哭]
QQ图片20200308163514.png

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2020-3-8 18:22:18

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

 Author| kuing Posted at 2020-3-8 19:18:24
回复 2# 乌贼

嗯,我后来也想起来了九点圆

手机版Mobile version|Leisure Math Forum

2025-4-21 19:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list