Forgot password?
 Register account
View 1405|Reply 3

[数列] 19-20苏州,无锡,常州,镇江高三二模附加压轴数列不等式

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2020-5-28 15:01 |Read mode
已知数列$\{a_n\}$中, $a_1=6$, $a_{n+1}=\dfrac{1}{3}a_n^2-a_n+3$.
证明: 当$n\geqslant3$时, $\sum_{i=2}^n(\dfrac{a_i}{6})^{\dfrac{2}{i}}>2(\dfrac{3}{2})^n-3$.

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2020-5-28 19:52
是想要跟参考答案的数学归纳法不同的解法吗?应该没了吧

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2020-5-29 00:23
回复 1# aishuxue


  大水母吧...

\[a_{n+1}-\frac{3}{2}=\frac{1}{3}(a_n-\frac{3}{2})^2+\frac{3}{4}\]
这样意味着
\[a_{n+1}-\frac{3}{2}>\frac{1}{3}(a_n-\frac{3}{2})^2\]

\[a_{n}-\frac{3}{2}>3\cdot\left(\frac{3}{2}\right)^{2^{n-1}}\]
\[a_n>3\cdot\left(\frac{3}{2}\right)^{2^{n-1}}+\frac{3}{2}\]
你们知道这个玩意有多大么?
\[\frac{a_n}{6}\cdot n-\left[2(\frac{3}{2})^n-3\right]>\frac{n}{2}\cdot\left(\frac{3}{2}\right)^{2^{n-1}}+\frac{n}{4}-\left[2(\frac{3}{2})^n-3\right]\]
\[=(\frac{3}{2})^n\cdot\left(\frac{n}{2}\cdot\left(\frac{3}{2}\right)^{2^{n-1}-n}-2\right)+\frac{n}{4}+3\]
这里面当$n\ge 3$时就有$\left(\frac{n}{2}\cdot\left(\frac{3}{2}\right)^{2^{n-1}-n}-2\right)>0$了,$n=2$时整个的值为$\frac{5}{4}>0$

也就是说,光是求和的最后一项就已经远远大于右边了,更别说还要加上前面的一大堆

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2020-5-29 03:00
回复 3# 战巡

由于 \dfrac 被,以至于上标也变成大的分式,所以左边的 $\sum_{i=2}^n(\dfrac{a_i}{6})^{\dfrac{2}{i}}$  不是  $(\dfrac{a_i}6)\ i$  是  $(\dfrac{a_i}6)^{\frac2i}$……

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit