Forgot password?
 Register account
View 2446|Reply 24

[不等式] 如何比较两个对数值的大小

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2018-11-1 16:06 |Read mode
$如何比较log_\dfrac{1}{4}\dfrac{8}{7}与log_\dfrac{1}{5}\dfrac{6}{5}的大小。$

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2018-11-1 16:42
《撸题集》P. 208 有个类似的,证得比较丑。

PS、又见滥用\dfrac

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2018-11-1 17:03
回复 2# 色k
《撸题集》P. 208的跟这个有点象,1#的好象更紧一些。
不知证法如何?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-11-1 17:54
回复 3# lemondian

不好意思,目前我对这类题一点性趣都木有……

不过我印象中好像见过 v6 发过一个解法,一时也没找着。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2018-11-1 18:07
回复 4# kuing

呵,提不起kuing的性趣呀

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-11-1 18:49
回复 2# 色k

。。。



forum.php?mod=viewthread&tid=4827

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2018-11-2 14:33
回复 6# isee

嗯,是差不多,

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-11-2 15:18
回复 6# isee

嗯,那照搬单墫的就可以了。(8/7)^5 < (6/5)^4 同样成立

3

Threads

41

Posts

228

Credits

Credits
228

Show all posts

wwdwwd117 Posted 2018-11-3 04:16
回复 8# kuing


    我把这个问题加强了下,反而好做了

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-11-3 07:49
回复 9# wwdwwd117

我还以为你附了个图,等了好一会儿。。。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-11-3 12:07
回复 9# wwdwwd117

写来看看啊

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2018-11-3 14:15
回复 11# kuing

应该是用字母代替数了。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2018-11-4 11:01
回复 9# wwdwwd117

写出来学习下吧

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2018-11-8 00:52
回复 13# lemondian


唉,比较大小比较大小,两个常数谁大谁小直接看数值一目了然,用什么函数呢?为啥就硬是不肯把数值算出来呢?

没计算器就不能求值么?那计算器是怎么做到的?人就不能照搬?
我们知道对任意$x>0$,有
\[\ln(x)=2\sum_{n=0}^\infty\frac{1}{2n+1}(\frac{x-1}{x+1})^{2n+1}\]
这玩意在$x$越接近$1$的时候精度越高,可以用越少的项逼近,简单起见我们取3项好了
\[\hat{\ln(x)}=2[\frac{x-1}{x+1}+\frac{1}{3}(\frac{x-1}{x+1})^3+\frac{1}{5}(\frac{x-1}{x+1})^5]\]
然后
\[\log_{\frac{1}{4}}(\frac{8}{7})=\frac{\ln(\frac{8}{7})}{-2\ln(2)}\approx\frac{0.1335}{-2·0.693}=-0.09632\]
\[\log_{\frac{1}{5}}(\frac{6}{5})=\frac{\ln(\frac{6}{5})}{-\ln(\frac{5}{4})-2\ln(2)}\approx\frac{0.1823}{-0.223-2·0.693}=-0.113\]

你说哪个大?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-4-3 17:14
战巡 发表于 2018-11-7 16:52
我们知道对任意$x>0$,有
\[\ln(x)=2\sum_{n=0}^\infty\frac{1}{2n+1}(\frac{x-1}{x+1})^{2n+1}\]
补充一下推导:
tanh⁻¹$(x)=\dfrac12\ln\dfrac{1+x}{1-x}.$
tanh⁻¹$(x)=\sum_{n=0}^\infty\dfrac{1}{2n+1}x^{2n+1}$
由上面两式得出……

Comment

又挖fen……  Posted 2024-4-4 23:15

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2024-4-4 23:12
Last edited by 睡神 2024-4-5 01:32事实上,连分数收敛更快,只需要取渐近分数$\dfrac{p_2}{q_2}$即可达到

$\log_\frac{1}{4}\dfrac{8}{7}-\log_\frac{1}{5}\dfrac{6}{5}=\log_4\dfrac{7}{8}-\log_5\dfrac{5}{6}=\log_4{14}+\log_5{6}-3$

$>[1;1,9]+[1;8,1]-3=\dfrac{19}{10}+\dfrac{10}{9}-3=\dfrac{1}{90}>0$
除了不懂,就是装懂

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2024-4-4 23:48
睡神 发表于 2024-4-4 15:12
事实上,连分数收敛更快
相关帖子:forum.php?mod=viewthread&tid=6472

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2024-4-5 00:36
用拉格朗日那个,还不如规规矩矩的算平方数...比如:

$\log_5{6}$取整$a_0=1$

$\dfrac{1}{\log_56-1}=\log_{1.2}5$

为了更快达到想要的效果,不断重复执行$x^2$或$x^m\cdot x^n$:

$1.2^2=1.44,1.44^2\approx2.07,2.07^2\approx4.28,4.28\times1.2\approx5.136>5$

此时,取$a_1=8$

感觉这样更快速方便

$\dfrac{1}{\log_{1.2}5-8}\approx\log_\frac{5}{4.28}1.2\approx\log_{1.17}1.2$取整$a_2=1$

由于不断进行四舍五入,暂时不清楚误差会不会逐渐偏大,从而导致出差错!个人愚见,望各位大佬多多指教!

Comment

保留更多位数的小数,这样精度会更好,计算量也会随之增大。当执行的平方次数较少时,感觉保留2位小数足够了  Posted 2024-4-5 00:59
除了不懂,就是装懂

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2024-4-5 01:44
睡神 发表于 2024-4-4 23:12
事实上,连分数收敛更快,只需要取渐近分数$\dfrac{p_2}{q_2}$即可达到

$\log_\frac{1}{4}\dfrac{8}{7}-\l ...
若取渐近分数$\dfrac{p_4}{q_4}$,则

$\log_4{14}+\log_5{6}-3>[1;1,9,2,1]+[1;8,1,4,1]-3=\dfrac{59}{31}+\dfrac{59}{53}-3=\dfrac{27}{1643}>0$

$\log_4{14}+\log_5{6}-3\approx 0.01696,\dfrac{1}{90}\approx 0.11111,\dfrac{27}{1643}\approx 0.01643,0.113-0.09632\approx 0.01668$

还是战巡大佬的更精确!!!拜服!!!
除了不懂,就是装懂

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2024-4-5 02:39 From mobile phone
取$\dfrac{p_6}{q_6}$

$[1;1,9,2,1,1,1]+[1;8,1,4,1,3,1]-3=\dfrac{158}{83}+\dfrac{285}{256}-3=\dfrac{359}{21248}\approx 0.016896$

精确度终于上来了😂😂😂
除了不懂,就是装懂

Mobile version|Discuz Math Forum

2025-5-31 10:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit