Forgot password
 Register account
View 1832|Reply 4

[函数] 函数证明,极值点偏移

[Copy link]
皮卡丘族长 posted 2020-5-31 22:24 |Read mode
Last edited by 皮卡丘族长 2020-6-1 22:59已知f(x)=$\ln x+\frac{2}{x}$求证:当f(m)=f(n)时,m+n≥4.

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2020-6-1 20:25
回复 1# 皮卡丘族长

极典型的纯正极值点偏移啊

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2020-6-1 20:35
回复 2# isee


    当然,我未动笔,“构造函数差”也许难算。。。


    从对数均值不等式角度出发试试

\begin{align*}
m&\ne n\\[1em]
\ln m-\ln n&=\frac 2n-\frac 2m=\frac {2(m-n)}{mn}\\[1em]
\sqrt{mn}<\frac {m-n}{\ln m-\ln n}&=\frac {mn}2<\frac {m+n}2\\[1em]
\Rightarrow mn&>4\\[1em]
\Rightarrow m+n&>4
\end{align*}

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2020-6-1 20:49
Last edited by isee 2020-6-1 20:59回复 3# isee


当$m\ne n$时,构造$$F(x)=f(2-x)-f(2+x),0<x<2,$$ $F(x)$的导数也是好求的,求导后导数大于零。


类似于forum.php?mod=viewthread&tid=5238
original poster 皮卡丘族长 posted 2020-6-1 21:16
回复 4# isee


    哦,原来如此,非常感谢.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:05 GMT+8

Powered by Discuz!

Processed in 0.012213 seconds, 24 queries