Forgot password
 Register account
View 1588|Reply 7

积分不等式

[Copy link]

81

Threads

165

Posts

1

Reputation

Show all posts

APPSYZY posted 2020-6-9 16:49 |Read mode
Last edited by hbghlyj 2025-6-9 18:58设 $f(x)$ 在 $[0,1]$ 上有连续导数。$f(0)=0, f(1)=0$. 证明$$\int_0^1 f^2(x) d x \leq \frac{1}{8} \int_0^1 {f'}^2(x)\rmd x .$$

81

Threads

165

Posts

1

Reputation

Show all posts

original poster APPSYZY posted 2020-6-9 16:50
系数为1/4证出来了,1/8证不出来

81

Threads

165

Posts

1

Reputation

Show all posts

original poster APPSYZY posted 2020-6-9 16:56
但是感觉1/8这个系数还可以更小,不知最小可以是多少...

461

Threads

958

Posts

4

Reputation

Show all posts

青青子衿 posted 2020-6-10 15:09
回复 3# APPSYZY
但是感觉1/8这个系数还可以更小,不知最小可以是多少...
APPSYZY 发表于 2020-6-9 16:56
将\(f(x)\)在区间\([0,1]\)上展开为正弦级数
\[f(x)=\sum_{n=1}^{\infty}b_n\sin\left(n\pi\,\!x\right)\]
则有
\[f'(x)=\sum_{n=1}^{\infty}\big(n\pi\big)\,\!b_n\sin\left(n\pi\,\!x\right)\]
由帕塞尔(Parseval)等式,可知
\begin{align*}
\int_0^1\!f^2(x)\,\mathrm{d}x&=\dfrac{1}{2}\sum_{n=1}^{\infty}{b_n}\!^2\\
\int_0^1\!\Big(f'(x)\Big)^2\,\mathrm{d}x&=\dfrac{1}{2}\sum_{n=1}^{\infty}\big(n\pi\big)^2{b_n}\!^2=\dfrac{\pi^2}{2}\sum_{n=1}^{\infty}n^2{b_n}\!^2\\
&\geqslant\dfrac{\pi^2}{2}\sum_{n=1}^{\infty}{b_n}\!^2=\pi^2\cdot\dfrac{1}{2}\sum_{n=1}^{\infty}{b_n}\!^2\\
&=\pi^2\int_0^1\!f^2(x)\,\mathrm{d}x
\end{align*}
于是,有\(\,\displaystyle\int_0^1\!f^2(x)\,\mathrm{d}x\leqslant \dfrac{1}{\pi^2}\int_0^1\!\Big(f'(x)\Big)^2\,\mathrm{d}x\,\),
等号当且仅当\(\,f(x)=\sin(\pi\,x)\,\)时取得.

81

Threads

165

Posts

1

Reputation

Show all posts

original poster APPSYZY posted 2020-6-10 22:24
回复 4# 青青子衿
是怎么想到利用正弦级数展开的?好厉害!

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2020-6-12 12:04
回复 4# 青青子衿

这个$f(0)=f(1)=0$的条件是怎么用的?这应该是个很关键的条件吧,没有这个条件,像$f(x)=x$这样的函数就不能满足那个不等式。

461

Threads

958

Posts

4

Reputation

Show all posts

青青子衿 posted 2020-8-17 11:15
[讨论] 一个积分型不等式的证明
bbs.emath.ac.cn/forum.php?mod=viewthread&tid=9121

461

Threads

958

Posts

4

Reputation

Show all posts

青青子衿 posted 2020-9-12 11:19
回复 6# abababa
5635211527.png

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 11:28 GMT+8

Powered by Discuz!

Processed in 0.013669 seconds, 25 queries