Forgot password?
 Create new account
View 1418|Reply 7

积分不等式

[Copy link]

81

Threads

170

Posts

1660

Credits

Credits
1660

Show all posts

APPSYZY Posted at 2020-6-9 16:49:41 |Read mode
okkkkk.jpg

81

Threads

170

Posts

1660

Credits

Credits
1660

Show all posts

 Author| APPSYZY Posted at 2020-6-9 16:50:05
系数为1/4证出来了,1/8证不出来

81

Threads

170

Posts

1660

Credits

Credits
1660

Show all posts

 Author| APPSYZY Posted at 2020-6-9 16:56:04
但是感觉1/8这个系数还可以更小,不知最小可以是多少...

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2020-6-10 15:09:03
回复 3# APPSYZY
但是感觉1/8这个系数还可以更小,不知最小可以是多少...
APPSYZY 发表于 2020-6-9 16:56

将\(f(x)\)在区间\([0,1]\)上展开为正弦级数
\[f(x)=\sum_{n=1}^{\infty}b_n\sin\left(n\pi\,\!x\right)\]
则有
\[f'(x)=\sum_{n=1}^{\infty}\big(n\pi\big)\,\!b_n\sin\left(n\pi\,\!x\right)\]
由帕塞尔(Parseval)等式,可知
\begin{align*}
\int_0^1\!f^2(x)\,\mathrm{d}x&=\dfrac{1}{2}\sum_{n=1}^{\infty}{b_n}\!^2\\
\int_0^1\!\Big(f'(x)\Big)^2\,\mathrm{d}x&=\dfrac{1}{2}\sum_{n=1}^{\infty}\big(n\pi\big)^2{b_n}\!^2=\dfrac{\pi^2}{2}\sum_{n=1}^{\infty}n^2{b_n}\!^2\\
&\geqslant\dfrac{\pi^2}{2}\sum_{n=1}^{\infty}{b_n}\!^2=\pi^2\cdot\dfrac{1}{2}\sum_{n=1}^{\infty}{b_n}\!^2\\
&=\pi^2\int_0^1\!f^2(x)\,\mathrm{d}x
\end{align*}
于是,有\(\,\displaystyle\int_0^1\!f^2(x)\,\mathrm{d}x\leqslant \dfrac{1}{\pi^2}\int_0^1\!\Big(f'(x)\Big)^2\,\mathrm{d}x\,\),
等号当且仅当\(\,f(x)=\sin(\pi\,x)\,\)时取得.

81

Threads

170

Posts

1660

Credits

Credits
1660

Show all posts

 Author| APPSYZY Posted at 2020-6-10 22:24:20
回复 4# 青青子衿
是怎么想到利用正弦级数展开的?好厉害!

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2020-6-12 12:04:43
回复 4# 青青子衿

这个$f(0)=f(1)=0$的条件是怎么用的?这应该是个很关键的条件吧,没有这个条件,像$f(x)=x$这样的函数就不能满足那个不等式。

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2020-8-17 11:15:25
[讨论] 一个积分型不等式的证明
bbs.emath.ac.cn/forum.php?mod=viewthread&tid=9121

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2020-9-12 11:19:06
回复 6# abababa
5635211527.png

手机版Mobile version|Leisure Math Forum

2025-4-21 01:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list