Forgot password?
 Register account
View 880|Reply 2

数列极限与函数

[Copy link]

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

APPSYZY Posted 2020-6-18 17:13 |Read mode
已知函数$f(x)$可导,且$f(0)=1$,$0<f'(x)<\dfrac{1}{2}$,设数列$\{x_n\}$满足$x_{n+1}=f(x_n)$ $(n=1,2,\cdots)$. 证明:$\lim\limits_{n\to \infty}x_n$存在,且$0<\lim\limits_{n\to \infty}x_n<2$.

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2020-6-18 17:31
易证 `f(x)=x` 在 `(1,2)` 上有解,记此解为 `a`,则 $\abs{x_{n+1}-a}=\abs{f(x_n)-f(a)}<0.5\abs{x_n-a}$,所以极限就是 `a`。

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

 Author| APPSYZY Posted 2020-6-18 18:10
回复 2# kuing
okokok.jpg
根据kuing给的思路,把它证明了,不知是否可以。

Mobile version|Discuz Math Forum

2025-6-5 08:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit