Forgot password?
 Create new account
View 930|Reply 1

平行于立方体的面对角线作6个圆柱,求交集的体积

[Copy link]

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2020-9-5 20:11:08 |Read mode
  1. cyls = {{0, 1/Sqrt[2], 1/Sqrt[2]}, {0, -(1/Sqrt[2]), 1/Sqrt[2]}, {1/Sqrt[2], 0, 1/Sqrt[2]}, {-(1/Sqrt[2]), 0, 1/Sqrt[2]}, {1/Sqrt[2], 1/Sqrt[2], 0}, {-(1/Sqrt[2]), 1/Sqrt[2], 0}};
  2. Graphics3D[cyl = Cylinder[3 {-#, #}] & /@ cyls]
Copy the Code
未命名-1.png
\[V=\dfrac{16}{3}\left(3+2\sqrt3-4\sqrt2\right)\]
36个曲面,其中24个是筝形的,12个是菱形的(Moore 1974).

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2020-9-5 20:22:35
  1. ineq = 2 x^2 + (y - z)^2 < 2 && 2 x^2 + (y + z)^2 < 2 && 2 (-1 + y^2) + (x - z)^2 < 0 && 2 y^2 + (x + z)^2 < 2 && (x - y)^2 + 2 (-1 + z^2) < 0 && (x + y)^2 + 2 z^2 < 2; With[{h = 1.2},RegionPlot3D[ineq, {x, -h, h}, {y, -h, h}, {z, -h, h}, Boxed -> False, Axes -> None, PlotPoints -> 75, Mesh -> None]]
Copy the Code
未命名-1.png

手机版Mobile version|Leisure Math Forum

2025-4-21 01:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list