Forgot password?
 Create new account
View 1128|Reply 4

猜想

[Copy link]

54

Threads

162

Posts

1243

Credits

Credits
1243

Show all posts

血狼王 Posted at 2020-9-14 21:03:36 |Read mode
证明或否证以下猜想:
$$\lim_{x\to 0^+} (\frac{1}{\ln x}\int_0^{\pi/2}\frac{d \theta}{\sqrt{x^2 \cos^2\theta+\sin^2\theta}})=-1.$$
血狼王者,格罗特克斯(Grotex)是也。
AOPS的id:Grotex

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2020-9-15 18:59:22
回复 1# 血狼王


\[\int_0^{\frac{\pi}{2}}\frac{d\theta}{\sqrt{x^2\cos^2(\theta)+\sin^2(\theta)}}=\int_0^{\frac{\pi}{2}}\frac{d\theta}{\sqrt{1-(1-x^2)\cos^2(\theta)}}\]
按照定义,这就是第一类椭圆积分,有
\[\int_0^{\frac{\pi}{2}}\frac{d\theta}{\sqrt{1-(1-x^2)\cos^2(\theta)}}=\int_{\frac{\pi}{2}}^0\frac{d(\frac{\pi}{2}-\theta)}{\sqrt{1-(1-x^2)\cos^2(\frac{\pi}{2}-\theta)}}=\int_0^{\frac{\pi}{2}}\frac{d\theta}{\sqrt{1-(1-x^2)\sin^2(\theta)}}=F(\frac{\pi}{2}|1-x^2)\]
注意
\[\lim_{x\to0^+}F(\frac{\pi}{2}|1-x^2)=\int_0^{\frac{\pi}{2}}\frac{d\theta}{\cos(\theta)}=+\infty\]
这里就可以直接洛必达了,有
\[\lim_{x\to0^+}\frac{F(\frac{\pi}{2}|1-x^2)}{\ln(x)}=\lim_{x\to0^+}x\cdot(-2x)\left[\frac{E(\frac{\pi}{2}|1-x^2)}{2(1-x^2)x^2}-\frac{F(\frac{\pi}{2}|1-x^2)}{2(1-x^2)}\right]\]
其中$E(\frac{\pi}{2}|1-x^2)$为第二类椭圆积分,有
\[E(\frac{\pi}{2}|1-x^2)=\int_0^{\frac{\pi}{2}}\sqrt{1-(1-x^2)\sin^2(\theta)}d\theta\]
然后原式变成
\[=\lim_{x\to0^+}x^2F(\frac{\pi}{2}|1-x^2)-E(\frac{\pi}{2}|1)\]
这其中
\[\lim_{x\to0^+}x^2F(\frac{\pi}{2}|1-x^2)=\lim_{x\to0^+}\int_0^{\frac{\pi}{2}}\frac{x^2d\theta}{\sqrt{1-(1-x^2)\sin^2(\theta)}}\]

\[E(\frac{\pi}{2}|1)=\int_0^{\frac{\pi}{2}}\cos(\theta)d\theta=1\]
这里
\[0<\lim_{x\to0^+}\frac{x^2}{\sqrt{1-(1-x^2)\sin^2(\theta)}}<\lim_{x\to0^+}\frac{x^2}{\sqrt{1-(1-x^2)}}=0\]
故此
\[\lim_{x\to0^+}x^2F(\frac{\pi}{2}|1-x^2)=\lim_{x\to0^+}\int_0^{\frac{\pi}{2}}\frac{x^2d\theta}{\sqrt{1-(1-x^2)\sin^2(\theta)}}=0\]
于是
\[原式=\lim_{x\to0^+}x^2F(\frac{\pi}{2}|1-x^2)-E(\frac{\pi}{2}|1)=0-1=-1\]

54

Threads

162

Posts

1243

Credits

Credits
1243

Show all posts

 Author| 血狼王 Posted at 2020-9-19 00:43:33
这个结论我在《特殊函数概论》没找出来,估计是作者介绍椭圆函数的时候没往那方面写……

109

Threads

226

Posts

2915

Credits

Credits
2915

Show all posts

facebooker Posted at 2020-9-19 17:09:24
是不是可以在阶的估计 里面找到答案?

54

Threads

162

Posts

1243

Credits

Credits
1243

Show all posts

 Author| 血狼王 Posted at 2020-9-20 02:22:56
回复 4# facebooker

椭圆函数那部分没讲过关于“渐近阶”的问题
“阶的估计”那一段我看过了,似乎也没有提到椭圆函数的例子

手机版Mobile version|Leisure Math Forum

2025-4-21 14:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list