Forgot password?
 Register account
View 1105|Reply 2

数项级数条件收敛,对应的幂级数一定收敛吗?

[Copy link]

411

Threads

1618

Posts

110K

Credits

Credits
11808

Show all posts

abababa Posted 2020-9-29 13:39 |Read mode
若数项级数$\sum_{n=0}^{\infty}c_n$收敛而$\sum_{n=0}^{\infty}\abs{c_n}$发散,则幂级数$\sum_{n=0}^{\infty}c_nx^n$的收敛半径为$1$。

如果那个幂级数收敛,确实能证明出收敛半径是$1$,但怎么证明那个幂级数收敛?

50

Threads

402

Posts

2881

Credits

Credits
2881
QQ

Show all posts

zhcosin Posted 2020-9-29 18:22
如果那个幂级数收敛, .....此处忽略..., 但怎么证明那个幂级数收敛?

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2023-4-15 07:33
Cauchy–Hadamard theorem
对于复数变量$z$的幂级数
$$ f(z)=\sum _{n=0}^{\infty }c_{n}(z-a)^{n}. $$
上式中$ a,c_{n}\in \mathbb {C} $,
则该级数收敛半径 $R$ 由下式给出:
$$ {\frac {1}{R}}=\limsup _{n\to \infty }{\big (}|c_{n}|^{\frac {1}{n}}{\big )}. $$

Mobile version|Discuz Math Forum

2025-6-5 08:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit