Forgot password
 Register account
View 1113|Reply 2

数项级数条件收敛,对应的幂级数一定收敛吗?

[Copy link]

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2020-9-29 13:39 |Read mode
若数项级数$\sum_{n=0}^{\infty}c_n$收敛而$\sum_{n=0}^{\infty}\abs{c_n}$发散,则幂级数$\sum_{n=0}^{\infty}c_nx^n$的收敛半径为$1$。

如果那个幂级数收敛,确实能证明出收敛半径是$1$,但怎么证明那个幂级数收敛?

50

Threads

402

Posts

5

Reputation

Show all posts

zhcosin posted 2020-9-29 18:22
如果那个幂级数收敛, .....此处忽略..., 但怎么证明那个幂级数收敛?

3214

Threads

7831

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-4-15 07:33
Cauchy–Hadamard theorem
对于复数变量$z$的幂级数
$$ f(z)=\sum _{n=0}^{\infty }c_{n}(z-a)^{n}. $$
上式中$ a,c_{n}\in \mathbb {C} $,
则该级数收敛半径 $R$ 由下式给出:
$$ {\frac {1}{R}}=\limsup _{n\to \infty }{\big (}|c_{n}|^{\frac {1}{n}}{\big )}. $$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 11:10 GMT+8

Powered by Discuz!

Processed in 0.012021 seconds, 22 queries