Forgot password?
 Create new account
View 982|Reply 2

数项级数条件收敛,对应的幂级数一定收敛吗?

[Copy link]

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2020-9-29 13:39:16 |Read mode
若数项级数$\sum_{n=0}^{\infty}c_n$收敛而$\sum_{n=0}^{\infty}\abs{c_n}$发散,则幂级数$\sum_{n=0}^{\infty}c_nx^n$的收敛半径为$1$。

如果那个幂级数收敛,确实能证明出收敛半径是$1$,但怎么证明那个幂级数收敛?

51

Threads

404

Posts

2896

Credits

Credits
2896
QQ

Show all posts

zhcosin Posted at 2020-9-29 18:22:46
如果那个幂级数收敛, .....此处忽略..., 但怎么证明那个幂级数收敛?

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-4-15 07:33:40
Cauchy–Hadamard theorem
对于复数变量$z$的幂级数
$$ f(z)=\sum _{n=0}^{\infty }c_{n}(z-a)^{n}. $$
上式中$ a,c_{n}\in \mathbb {C} $,
则该级数收敛半径 $R$ 由下式给出:
$$ {\frac {1}{R}}=\limsup _{n\to \infty }{\big (}|c_{n}|^{\frac {1}{n}}{\big )}. $$

手机版Mobile version|Leisure Math Forum

2025-4-21 01:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list