Forgot password?
 Create new account
View 2655|Reply 4

[不等式] 一个三元不等式

[Copy link]

93

Threads

88

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted at 2020-10-8 12:07:42 |Read mode
已知正实数$a$, $b$, $c$满足$a+b+c=1$,
求证: $\dfrac{b^2}{a+b^2}+\dfrac{c^2}{b+c^2}+\dfrac{a^2}{c+a^2}\geqslant\dfrac{3}{4}$.

Related collections:

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2020-10-8 15:53:21
由 CS 有
\[LHS=\sum\frac{b^4}{ab^2+b^4}\geqslant\frac{(a^2+b^2+c^2)^2}{ab^2+bc^2+ca^2+a^4+b^4+c^4},\]所以只需证
\[4(a^2+b^2+c^2)^2\geqslant3(ab^2+bc^2+ca^2+a^4+b^4+c^4),\]熟知
\[ab^2+bc^2+ca^2+abc\leqslant\frac4{27}(a+b+c)^3,\]所以只需证
\[4(a^2+b^2+c^2)^2\geqslant3\left( \frac4{27}(a+b+c)^3-abc+a^4+b^4+c^4 \right),\]齐次化等价于
\[36(a^2+b^2+c^2)^2\geqslant4(a+b+c)^4-27abc(a+b+c)+27(a^4+b^4+c^4),\quad(*)\]然后……呃……一时没很简单的……呃……pqr可行……待续……

93

Threads

88

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted at 2020-10-8 17:51:09
回复 2# kuing
看着简单,似乎还有点难度

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2020-10-8 18:15:38
回复 3# aishuxue

嗯,算了,还是不用 4/27 那个放缩了,直接对第二条式展开好了……

也就是
\begin{align*}
&4(a^2+b^2+c^2)^2-3\bigl((ab^2+bc^2+ca^2)(a+b+c)+a^4+b^4+c^4\bigr)\\
={}&(a^2+b^2+c^2)^2-3(ab^3+bc^3+ca^3)+3\bigl(a^2b^2+b^2c^2+c^2a^2-abc(a+b+c)\bigr),
\end{align*}那么根据 Vasc 不等式可知不等式成立。

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2020-10-8 21:25:55
不服气,还是对 2# 最后的式 (*) 配了个装逼等式

不妨设 `a=\max\{a,b,c\}`,则
\begin{align*}
&36(a^2+b^2+c^2)^2-4(a+b+c)^4+27abc(a+b+c)-27(a^4+b^4+c^4)\\
={}&\frac{(10a-11b-11c)^2+36bc+619(b-c)^2}{20}(a-b)(a-c)+3(7ab+7ac-11bc)(b-c)^2+5(b-c)^4,
\end{align*}显然非负,所以式 (*) 成立。

手机版Mobile version|Leisure Math Forum

2025-4-20 22:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list